Ahlquist, J.S., and Breunig, C. (2012). Model-based clustering and typologies in the social sciences. Political Analysis, 20(1): 92—112.
- Antonelli, C. (1999). Evolution of Technological Cooperation in the Microdynamics of Technological Change. London and New York: Routledge Frontiers of Political Economy. Chapter 9.
Paper not yet in RePEc: Add citation now
- Athey, S. (2017). Beyond prediction: Using big data for policy problems. Science 355(6324): 483—485.
Paper not yet in RePEc: Add citation now
Athey, S., Imbens, G. (2019). Machine learning methods economists should know about. Available at https://arxiv.org/abs/1903.10075
Athey, Susan C., Kevin A. Bryan, and Gans, J.S. (2020). The allocation of decision authority to human and artificial intelligence. AEA Papers and Proceedings, 110: 80—84. DOI: 10.1257/pandp.20201034
Bajari, P., Dalton, C., Hong, H., and Khwaja, A. (2014). Moral hazard, adverse selection and health expenditures: A Semiparametric Analysis. RAND Journal of Economics 45: 747-763.
Basturk, N., Paap, R., and van Dijk, D. (2012) Structural differences in economic growth: an endogenous clustering approach. Applied Economics, 44(1): 119-134.
Castellacci, F. (2008). Technology clubs, technology gaps, and growth trajectories. Structural Change and Economics Dynamics, 19: 301—314
Castellacci, F. (2011). Closing the technology gap? Review of Development Economics, 15(1): 180—197.
Castellacci, F., Archibugi, D. (2008). The technology clubs: The distribution of knowledge across nations. Research Policy, 37: 1659—1673
- Cerulli, G. (2020). Improving econometric prediction by machine learning. Applied Economics Letters. Forthcoming.
Paper not yet in RePEc: Add citation now
Clement, J. (2020). Social protection clusters in sub-Saharan Africa. International Journal of Social Welfare, 29: 20—28.
Cowgill, Bo., Stevenson, M.T. (2020). Algorithmic social engineering. AEA Papers and Proceedings, 110: 96—100. DOI: 10.1257/pandp.20201037
Currie, J., Kleven, H., and Zwiers, E. (2020). Technology and big data are changing economics: Mining text to track methods. AEA Papers and Proceedings, 110: 42—48. DOI: 10.1257/pandp.20201058
- De la Paz-Marín, M., Campoy-Muñoz, P., and Hervás-Martínez, C. (2012). Non-linear multi-classifier model based on artificial intelligence to predict research and development performance in European countries. Technological Forecasting and Social Change, 79(9): 1731—1745.
Paper not yet in RePEc: Add citation now
- De la Paz-Marín, M., Gutiérrez, P.A., and Martínez, C.H. (2015). Classification of countries’ progress toward a knowledge economy based on machine learning classification techniques. Expert Systems with Applications, 42: 562—572.
Paper not yet in RePEc: Add citation now
Durlauf, S. N., Johnson, P. A. (1995). Multiple regimes and cross-country growth behaviour. Journal of Applied Econometrics, 10: 365—384.
Fagerberg, J., Srholec, M., and Knell, M/ (2007). The competitiveness of nations: Why some countries prosper while others fall behind. World Development, 35 (10): 1595-1620.
Fraiman, R., Ghattas, B., and Svarc, M. (2013). Interpretable clustering using unsupervised binary trees. Advances in Data Analysis and Classification, 7(2): 125—145.
- Günther, F., and Fritsch, S. (2010). neuralnet: Training of neural networks. The R Journal, 2(1): 30—38.
Paper not yet in RePEc: Add citation now
- Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2002). Cluster validity methods: part I. ACM Sigmod Record, 31(2): 40—45.
Paper not yet in RePEc: Add citation now
- Kaufman, L., and Rousseeuw. P. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. New Jersey, NJ: Wiley.
Paper not yet in RePEc: Add citation now
Kreiner, A., and Duca, J.V. (2020). Can machine learning on economic data better forecast the unemployment rate? Applied Economics Letters, 27 (17): 1434—1437
- Kuncheva, L.I. (2014). Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons.
Paper not yet in RePEc: Add citation now
Liu, Y., and Xie, T. (2019). Machine learning versus econometrics: Prediction of box office. Applied Economics Letters, 26(2): 124—130.
Mueller, S.Q. (2020). Pre-and within season attendance forecasting in Major League Basketball: A random forest approach. Applied Economics, 52(41): 4512—4528
- Nelson, R., and Phelps, E. (1966). Investment in humans, technological diffusion, and economic growth. American Economic Review, 56(2): 67—75.
Paper not yet in RePEc: Add citation now
- Onan, A. (2016). The use of data mining for strategic management: a case study on mining association rules in student information system. Croatian Journal of Education: Hrvatski časopis za odgoj i obrazovanje, 18(1): 41—70.
Paper not yet in RePEc: Add citation now
- Onan, A. (2017). Hybrid supervised clustering based ensemble scheme for text classification. Kybernetes, Vol. 46(2): 330—348.
Paper not yet in RePEc: Add citation now
- Onan, A. (2018). An ensemble scheme based on language function analysis and feature engineering for text genre classification. Journal of Information Science, 44(1): 28—47. https://doi.org/10.1177/0165551516677911.
Paper not yet in RePEc: Add citation now
- Onan, A. (2018). Sentiment analysis on Twitter based on ensemble of psychological and linguistic feature sets. Balkan Journal of Electrical and Computer Engineering, 6(2): 69—77.
Paper not yet in RePEc: Add citation now
- Onan, A. (2019). Consensus Clustering-Based Undersampling Approach to Imbalanced Learning. Scientific Programming PB - Hindawi.
Paper not yet in RePEc: Add citation now
- Onan, A. (2020). Sentiment analysis on massive open online course evaluations: A text mining and deep learning approach. Computer Applications in Engineering Education: 1— 18. https://doi.org/10.1002/cae.22253.
Paper not yet in RePEc: Add citation now
- Onan, A., and Korukoğlu, S. (2017). A feature selection model based on genetic rank aggregation for text sentiment classification. Journal of Information Science, 43(1): 25—38.
Paper not yet in RePEc: Add citation now
- Onan, A., and Toçoğlu, M.A. (2021). A term weighted neural language model and stacked bidirectional LSTM based framework for sarcasm identification. IEEE Access, 9: 7701—7722.
Paper not yet in RePEc: Add citation now
- Onan, A., Korukoğlu, S., and Bulut, H. (2016). A multi-objective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification. Expert Systems with Applications, 62: 1—16.
Paper not yet in RePEc: Add citation now
- Onan, A., Korukoglu, S., and Bulut, H. (2016). LDA based topic modelling in text sentiment classification: An empirical analysis. International Journal of Computational Linguistics and Applications, 7(1): 101—119.
Paper not yet in RePEc: Add citation now
- Onan, A., Korukoğlu, S., Bulut, H. (2016). Ensemble of keyword extraction methods and classifiers in text classification. Expert Systems with Applications, 57: 232—247.
Paper not yet in RePEc: Add citation now
- Onan, A., Toçoğlu, M.A. (2020). Weighted word embeddings and ‐based identification of question topics in MOOC discussion forum posts. Computer Applications in Engineering Education; 1— 15. https://doi.org/10.1002/cae.22252.
Paper not yet in RePEc: Add citation now
- Porter, M.E. (1990). The Competitive Advantage of Nations. New York: Free Press.
Paper not yet in RePEc: Add citation now
Rambachan, A., Kleinberg, J., Ludwig, J., and Mullainathan, S. (2020). An economic perspective on algorithmic fairness. AEA Papers and Proceedings, 110: 91—95. DOI: 10.1257/pandp.20201036
- Rezankova, H. (2014). Cluster analysis of economic data. Statistika, 94(1): 73—85.
Paper not yet in RePEc: Add citation now
- Samarasinghe, S. (2016). Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. CRC Press.
Paper not yet in RePEc: Add citation now
Scharfenaker, E., and Schneider, M.P.A. (2020). Labor market segmentation and the distribution of income: New evidence from Internal Census Bureau Data. In book: Great Polarization: Economics, Institutions and Policies in the Age of Inequality. Cambridge.
Shaaba Saba, C., Oladipo Olalekan, D. (2020). Convergence patterns in global ICT: Fresh insights from a club clustering algorithm. Telecommunications Policy, 44(10), 102010.
- Stöllinger, R. (2013). International spillovers in a world of technology clubs. Structural Change and Economic Dynamics, 27: 19—35.
Paper not yet in RePEc: Add citation now
- Sulkowski, A. White, D.S. (2016). A happiness Kuznets curve? Using model-based cluster analysis to group countries based on happiness, development, income, and carbon emissions. Environment, Development and Sustainability, 18(4): 1095—1111.
Paper not yet in RePEc: Add citation now
- Therneau, T., Atkinson, B., Ripley, B., and Ripley, M.B. (2015). Package ‘rpart’. Available online at: cran.ma.ic.ac.uk/web/packages/rpart/rpart.pdf (accessed April 2020).
Paper not yet in RePEc: Add citation now
Wolfson, M., Madjd-Sadjadi, Z., and James, P. (2004). Identifying national types: A cluster analysis of politics, economics, and conflict. Journal of Peace Research, 41(5): 607—623.
- Xu, D., and Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data Science, 2(2): 165—193.
Paper not yet in RePEc: Add citation now