- Afriat, S. N. (1972), ‘Efficiency estimation of production functions’, International Economic Review 13(3), 568–598.
Paper not yet in RePEc: Add citation now
- Ahmad, I. A. & Li, Q. (1997), ‘Testing symmetry of an unknown density function by kernel method’, Journal of Nonparametric Statistics 7, 279–293.
Paper not yet in RePEc: Add citation now
- Aigner, D. & Chu, S. (1968), ‘On estimating the industry production function’, American Economic Review 58, 826–839.
Paper not yet in RePEc: Add citation now
- Aigner, D. J., Lovell, C. A. K. & Schmidt, P. (1977), ‘Formulation and estimation of stochastic frontier production functions’, Journal of Econometrics 6(1), 21–37.
Paper not yet in RePEc: Add citation now
- Aitchison, J. & Aitken, C. (1976), ‘Multivariate binary discrimination by the kernel method’, Biometrika 63, 413–420.
Paper not yet in RePEc: Add citation now
Ali, M. & Flinn, J. C. (1989), ‘Profit efficiency among Basmati rice producers in Pakistan Punjab’, American Journal of Agricultural Economics 71(2), 303–310.
- Almanidis, P. & Sickles, R. C. (2011), The skewness issue in stochastic frontier models: Fact or fiction?, in I. van Keilegom & P. W. Wilson, eds, ‘Exploring Research Frontiers in Contemporary Statistics and Econometrics’, Springer Verlag, Berlin.
Paper not yet in RePEc: Add citation now
- Alvarez, A., Amsler, C., Orea, L. & Schmidt, P. (2006), ‘Interpreting and testing the scaling property in models where inefficiency depends on firm characteristics’, Journal of Productivity Analysis 25(2), 201– 212.
Paper not yet in RePEc: Add citation now
- Amemiya, T. (1974), ‘The nonlinear two-stage least-squares estimator’, Journal of Econometrics 2, 105–111.
Paper not yet in RePEc: Add citation now
- Amsler, C., O’Donnell, C. J. & Schmidt, P. (2017), ‘Stochastic metafrontiers’, Econometric Reviews 36, 1007– 1020.
Paper not yet in RePEc: Add citation now
Amsler, C., Prokhorov, A. & Schmidt, P. (2016), ‘Endogeneity in stochastic frontier models’, Journal of Econometrics 190, 280–288.
Amsler, C., Prokhorov, A. & Schmidt, P. (2017), ‘Endogeneity environmental variables in stochastic frontier models’, Journal of Econometrics 199, 131–140.
- Atkinson, S. E. & Tsionas, E. G. (2016), ‘Direcitonal disance functions: Optimal endogenous directions’, Journal of Econometrics 190, 301–314.
Paper not yet in RePEc: Add citation now
- Azzalini, A. (1985), ‘A class of distributions which includes the normal ones’, Scandinavian Journal of Statistics 12(2), 171–178.
Paper not yet in RePEc: Add citation now
Badunenko, O. & Kumbhakar, S. C. (2017), ‘Economies of scale, technical change and persistent and timevarying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity matter?’, European Journal of Operational Research 260, 789–803.
- Baltagi, B. H. (2013), Econometric Analysis of Panel Data, 5th edn, John Wiley & Sons, Great Britain.
Paper not yet in RePEc: Add citation now
- Banker, R. D. & Maindiratta, A. (1992), ‘Maximum likelihood estimation of monotone and concave production frontiers’, Journal of Productivity Analysis 3(4), 401–415.
Paper not yet in RePEc: Add citation now
Banker, R. D. & Natarajan, R. (2008), ‘Evaluating contextual variables affecting productivity using data envelopment analysis’, Operations Research 56(1), 48–58.
Battese, G. E. & Coelli, T. J. (1988), ‘Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data’, Journal of Econometrics 38, 387–399.
- Battese, G. E. & Coelli, T. J. (1992), ‘Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India’, Journal of Productivity Analysis 3, 153–169.
Paper not yet in RePEc: Add citation now
Battese, G. E. & Coelli, T. J. (1995), ‘A model for technical inefficiency effects in a stochastic frontier production function for panel data’, Empirical Economics 20(1), 325–332.
Battese, G. E. & Corra, G. S. (1977), ‘Estimation of a production frontier model: With application to the pastoral zone off Eastern Australia’, Australian Journal of Agricultural Economics 21(3), 169–179.
- Battese, G. E. & Rao, D. S. P. (2002), ‘Technology gap, efficiency and a stochastic metafrontier function’, International Journal of Business and Economics 1, 1–7.
Paper not yet in RePEc: Add citation now
Battese, G. E., Rao, D. S. P. & O’Donnell, C. J. (2004), ‘A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies’, Journal of Productivity Analysis 21, 91–103.
Behr, A. (2010), ‘Quantile regression for robust bank efficiency score estimation’, European Journal of Operational Research 200, 568–581.
- Benabou, R. & Tirole, J. (2016), ‘Mindful economics: The production, consumption, and value of beliefs’, Journal of Economic Perspectives 30(3), 141–164.
Paper not yet in RePEc: Add citation now
Bera, A. K. & Sharma, S. C. (1999), ‘Estimating production uncertainty in stochastic frontier production function models’, Journal of Productivity Analysis 12(2), 187–210.
Bernini, C., Freo, M. & Gardini, A. (2004), ‘Quantile estimation of frontier production function’, Empirical Economics 29, 373–381.
Bloom, N., Lemos, R., Sadun, R., Scur, D. & Van Reenen, J. (2016), ‘International data on measuring management practices’, American Economic Review 106(5), 152–156.
Bonanno, G., De Giovanni, D. & Domma, F. (2017), ‘The ‘wrong skewness’ problem: a re-specification of stochastic frontiers’, Journal of Productivity Analysis 47(1), 49–64.
Bravo-Ureta, B. E. & Rieger, L. (1991), ‘Dairy farm efficiency measurement using stochastic frontiers and neoclassical duality’, American Journal of Agricultural Economics 73(2), 421–428.
Butler, J. & Moffitt, R. (1982), ‘A computationally efficient quadrature procedure for the one factor multinomial probit model’, Econometrica 50, 761–764.
Carree, M. A. (2002), ‘Technological inefficiency and the skewness of the error component in stochastic frontier analysis’, Economics Letters 77(1), 101–107.
- Case, B., Ferrari, A. & Zhao, T. (2013), ‘Regulatory reform and productivity change in indian banking’, The Review of Economics and Statistics 95(3), 1066–1077.
Paper not yet in RePEc: Add citation now
Caudill, S. B. (2003), ‘Estimating a mixture of stochastic frontier regression models via the EM algorithm: A multiproduct cost function application’, Empirical Economics 28(1), 581–598.
- Caudill, S. B. & Ford, J. M. (1993), ‘Biases in frontier estimation due to heteroskedasticity’, Economics Letters 41(1), 17–20.
Paper not yet in RePEc: Add citation now
Caudill, S. B., Ford, J. M. & Gropper, D. M. (1995), ‘Frontier estimation and firm-specific inefficiency measures in the presence of heteroskedasticity’, Journal of Business & Economic Statistics 13(1), 105– 111.
Chamberlain, G. (1987), ‘Asymptotic efficiency in estimation with conditional moment restrictions’, Journal of Econometrics 34(2), 305–334.
- Chen, L.-H., Cheng, M.-Y. & Peng, L. (2009), ‘Conditional variance estimation in heteroscedastic regression models’, Journal of Statistical Planning and Inference 139(2), 236–245.
Paper not yet in RePEc: Add citation now
Chen, Y.-Y., Schmidt, P. & Wang, H.-J. (2014), ‘Consistent estimation of the fixed effects stochastic frontier model’, Journal of Econometrics 181(2), 65–76.
Chu, C.-Y., Henderson, D. J. & Parmeter, C. F. (2017), ‘On discrete Epanechnikov kernels’, Computational Statistics and Data Analysis . forthcoming.
- Coelli, T. & Henningsen, A. (2013), frontier: Stochastic Frontier Analysis. R package version 1.1-0.
Paper not yet in RePEc: Add citation now
- Colombi, R., Kumbhakar, S., Martini, G. & Vittadini, G. (2014), ‘Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency’, Journal of Productivity Analysis 42(2), 123– 136.
Paper not yet in RePEc: Add citation now
Colombi, R., Martini, G. & Vittadini, G. (2011), A stochastic frontier model with short-run and longrun inefficiency random effects. Department of Economics and Technology Management, University of Bergamo, Working Paper Series.
Cornwell, C., Schmidt, P. & Sickles, R. C. (1990), ‘Production frontiers with cross-sectional and time-series variation in efficiency levels’, Journal of Econometrics 46(2), 185–200.
Cuesta, R. A. (2000), ‘A production model with firm-specific temporal variation in technical inefficiency: With application to Spanish dairy farms’, Journal of Productivity Analysis 13, 139–152.
- Daouia, A. & Park, B. U. (2013), ‘On projection-type estimators of multivariate isotonic functions’, Scandinavian Journal of Statistics 40, 363–386.
Paper not yet in RePEc: Add citation now
- Daouia, A. & Simar, L. (2005), ‘Robust nonparametric estimators of monotone boundaries’, Journal of Multivariate Analysis 96(2), 311–331.
Paper not yet in RePEc: Add citation now
- DomıÌÂnguez-Molina, J. A., GonzaÃŒÂlez-FarıÌÂas, G. & Ramos-Quiroga, R. (2003), Skew normality in stochastic frontier analysis. ComunicacioÃŒÂn TeÃŒÂcnica No I-03-18/06-10-2003 (PE/CIMAT).
Paper not yet in RePEc: Add citation now
Du, P., Parmeter, C. F. & Racine, J. S. (2013), ‘Nonparametric kernel regression with multiple predictors and multiple shape constraints’, Statistica Sinica 23(3), 1347–1371.
- Dugger, R. (1974), An application of bounded nonparametric estimating functions to the analysis of bank cost and production functions, PhD thesis, University of North Carolina , Chapel Hill.
Paper not yet in RePEc: Add citation now
Färe, R., Martins-Filho, C. & Vardanyan, M. (2010), ‘On functional form representation of multi-output production technologies’, Journal of Productivity Analysis 33(1), 81–96.
- Fan, J. & Gijbels, I. (1996), Local Polynomial Modelling and its Application, Chapman and Hall.
Paper not yet in RePEc: Add citation now
- Fan, J. & Yao, Q. (1998), ‘Efficient estimation of conditional variance functions in stochastic regression’, Biometrika 85, 645–660.
Paper not yet in RePEc: Add citation now
- Fan, Y., Li, Q. & Weersink, A. (1996), ‘Semiparametric estimation of stochastic production frontier models’, Journal of Business & Economic Statistics 14(4), 460–468.
Paper not yet in RePEc: Add citation now
Feng, Q., Horrace, W. C. & Wu, G. L. (2015), Wrong skewness and finite sample correction in parametric stochastic frontier models. Center for Policy Research - The Maxwell School, working paper N. 154.
- Gabrielsen, A. (1975), On estimating efficient production functions. Working Paper No. A-85, Chr. Michelsen Institute, Department of Humanities and Social Sciences, Bergen, Norway.
Paper not yet in RePEc: Add citation now
- Gagnepain, P. & Ivaldi, M. (2002), ‘Stochastic frontiers and asymmetric information models’, Journal of Productivity Analysis 18(2), 145–159.
Paper not yet in RePEc: Add citation now
- Greene, W. (2004), ‘Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization’s panel data on national health care systems’, Health Economics 13(9), 959– 980.
Paper not yet in RePEc: Add citation now
- Greene, W. H. (1980a), ‘Maximum likelihood estimation of econometric frontier functions’, Journal of Econometrics 13(1), 27–56.
Paper not yet in RePEc: Add citation now
- Greene, W. H. (1980b), ‘On the estimation of a flexible frontier production model’, Journal of Econometrics 13(1), 101–115.
Paper not yet in RePEc: Add citation now
Greene, W. H. (1990), ‘A gamma-distributed stochastic frontier model’, Journal of Econometrics 46(12) , 141–164.
- Greene, W. H. (2003), ‘Simulated likelihood estimation of the normal-gamma stochastic frontier function’, Journal of Productivity Analysis 19(2), 179–190.
Paper not yet in RePEc: Add citation now
- Greene, W. H. (2005a), ‘Fixed and random effects in stochastic frontier models’, Journal of Productivity Analysis 23(1), 7–32.
Paper not yet in RePEc: Add citation now
- Greene, W. H. (2005b), ‘Reconsidering heterogeneity in panel data estimators of the stochastic frontier model’, Journal of Econometrics 126(2), 269–303.
Paper not yet in RePEc: Add citation now
- Greene, W. H. (2008), The econometric approach to efficiency analysis, in C. A. K. L. H. O. Fried & S. S. Schmidt, eds, ‘The Measurement of Productive Efficiency and Productivity Change’, Oxford University Press, Oxford, United Kingdom, chapter 2.
Paper not yet in RePEc: Add citation now
Greene, W. H. (2010), ‘A stochastic frontier model with correction for sample selection’, Journal of Productivity Analysis 34(1), 15–24.
Greene, W. H. & Fillipini, M. (2014), Persistent and transient productive inefficiency: A maximum simulated likelihood approach. CER-ETH - Center of Economic Research at ETH Zurich, Working Paper 14/197.
Hadri, K. (1999), ‘Estimation of a doubly heteroscedastic stochastic frontier cost function’, Journal of Business & Economic Statistics 17(4), 359–363.
- Hafner, C., Manner, H. & Simar, L. (2016), ‘The “wrong skewness†problem in stochastic frontier model: a new approach’, Econometric Reviews . forthcoming.
Paper not yet in RePEc: Add citation now
- Hall, P. & Huang, H. (2001), ‘Nonparametric kernel regression subject to monotonicity constraints’, The Annals of Statistics 29(3), 624–647.
Paper not yet in RePEc: Add citation now
Hall, P. & Simar, L. (2002), ‘Estimating a changepoint, boundary or frontier in the presence of observation error’, Journal of the American Statistical Association 97, 523–534.
- Hansen, C., McDonald, J. B. & Newey, W. K. (2010), ‘Instrumental variables estimation with flexible distributions’, Journal of Business and Economic Statistics 28, 13–25.
Paper not yet in RePEc: Add citation now
- Hattori, T. (2002), ‘Relative performance of U.S. and Japanese electricity distribution: An application of stochastic frontier analysis’, Journal of Productivity Analysis 18(3), 269–284.
Paper not yet in RePEc: Add citation now
Henderson, D. J. & Parmeter, C. F. (2015a), Applied Nonparametric Econometrics, Cambridge University Press, Cambridge, Great Britain.
Henderson, D. J. & Parmeter, C. F. (2015b), ‘A consistent bootstrap procedure for nonparametric symmetry tests’, Economics Letters 131, 78–82.
- Hjalmarsson, L., Kumbhakar, S. C. & Heshmati, A. (1996), ‘DEA, DFA, and SFA: A comparison’, Journal of Productivity Analysis 7(2), 303–327.
Paper not yet in RePEc: Add citation now
Hollingsworth, B. (2008), ‘The measurement of efficiency and productivity of health care delivery’, Health Economics 17(10), 1107–1128.
- Horrace, W. C. & Parmeter, C. F. (2011), ‘Semiparametric deconvolution with unknown error variance’, Journal of Productivity Analysis 35(2), 129–141.
Paper not yet in RePEc: Add citation now
Horrace, W. C. & Parmeter, C. F. (2014), A Laplace stochastic frontier model. University of Miami Working Paper.
- Horrace, W. C. & Schmidt, P. (1996), ‘Confidence statements for efficiency estimates from stochastic frontier models’, Journal of Productivity Analysis 7, 257–282.
Paper not yet in RePEc: Add citation now
Horrace, W. C. & Wright, I. A. (2016), Stationary points for parametric stochastic frontier models. Center for Policy Research - The Maxwell School, working paper N. 196.
- Huang, C. J. & Liu, J.-T. (1994), ‘Estimation of a non-neutral stochastic frontier production function’, Journal of Productivity Analysis 5(1), 171–180.
Paper not yet in RePEc: Add citation now
Hulten, C. R. (2001), Total factor productivity. a short biography, in C. R. Hulten, E. R. Dean & M. J. Harper, eds, ‘New Developments in Productivity Analysis’, University of Chicago Press, Chicago, IL, pp. 1–54.
Jondrow, J., Lovell, C. A. K., Materov, I. S. & Schmidt, P. (1982), ‘On the estimation of technical efficiency in the stochastic frontier production function model’, Journal of Econometrics 19(2/3), 233–238.
- Kalirajan, K. P. (1990), ‘On measuring economic efficiency’, Journal of Applied Econometrics 5(1), 75–85.
Paper not yet in RePEc: Add citation now
Karakplan, M. U. & Kutlu, L. (2013), Handling endogeneity in stochastic frontier analysis. Unpublished manuscript.
Kim, M. & Schmidt, P. (2008), ‘Valid test of whether technical inefficiency depends on firm characteristics’, Journal of Econometrics 144(2), 409–427.
Kneip, A. & Simar, L. (1996), ‘A general framework for frontier estimation with panel data’, Journal of Productivity Analysis 7(2), 187–212.
Kneip, A., Simar, L. & Van Keilegom, I. (2015), ‘Frontier estimation in the presence of measurement error with unknown variance’, Journal of Econometrics 184, 379–393.
Knittel, C. R. (2002), ‘Alternative regulatory methods and firm efficiency: Stochastic frontier evidence form the U.S. electricity industry’, The Review of Economics and Statistics 84(3), 530–540.
- Know, K. J., Blankmeyer, E. C. & Stutzman, J. R. (2007), ‘Technical efficiency in Texan nursing facilities: a stochastic production frontier approach’, Journal of Economics and Finance 31(1), 75–86.
Paper not yet in RePEc: Add citation now
- Koenker, R. (2005), Quantile Regression, Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Koenker, R. & Bassett, G. (1978), ‘Regression quantiles’, Econometrica 46(1), 33–50.
Paper not yet in RePEc: Add citation now
- Koenker, R. & Hallock, K. (2001), ‘Quantile regression’, Journal of Economic Perspectives 15, 143–156.
Paper not yet in RePEc: Add citation now
Kumbhakar, S. C. (1990), ‘Production frontiers, panel data, and time-varying technical inefficiency’, Journal of Econometrics 46(1), 201–211.
- Kumbhakar, S. C. (1991), ‘The measurement and decomposition of cost-inefficiency: The translog cost system’, Oxford Economic Papers 43(6), 667–683.
Paper not yet in RePEc: Add citation now
Kumbhakar, S. C. (2011), ‘Estimation of production technology when the objective is to maximize return to the outlay’, European Journal of Operational Research 208, 170–176.
- Kumbhakar, S. C. (2013), ‘Specification and estimation of multiple output technologies: A primal approach’, European Journal of Operational Research 231, 465–473.
Paper not yet in RePEc: Add citation now
- Kumbhakar, S. C. & Heshmati, A. (1995), ‘Efficiency measurement in Swedish dairy farms: An application of rotating panel data, 1976-88’, American Journal of Agricultural Economics 77(3), 660–674.
Paper not yet in RePEc: Add citation now
- Kumbhakar, S. C. & Hjalmarsson, L. (1993), Technical efficiency and technical progress in Swedish dairy farms, in K. L. H. Fried & S. Schmidt, eds, ‘The Measurement of Productive Efficiency’, Oxford University Press, Oxford, United Kingdom.
Paper not yet in RePEc: Add citation now
Kumbhakar, S. C. & Hjalmarsson, L. (1998), ‘Relative performance of public and private ownership under yardstick competition: Electricity retail distribution’, European Economic Review 42(1), 97–122.
- Kumbhakar, S. C. & Lovell, C. A. K. (2000), Stochastic Frontier Analysis, Cambridge University Press.
Paper not yet in RePEc: Add citation now
Kumbhakar, S. C. & Parmeter, C. F. (2009), ‘The effects of match uncertainty and bargaining on labor market outcomes: evidence from firm and worker specific estimates’, Journal of Productivity Analysis 31(1), 1–14.
Kumbhakar, S. C. & Parmeter, C. F. (2010), ‘Estimation of hedonic price functions with incomplete information ’, Empirical Economics 39(1), 1–25.
- Kumbhakar, S. C. & Wang, H.-J. (2005), ‘Production frontiers, panel data, and time-varying technical inefficiency’, Journal of Econometrics 46(1), 201–211.
Paper not yet in RePEc: Add citation now
- Kumbhakar, S. C. & Wang, H.-J. (2006), ‘Estimation of technical and allocative inefficiency: A primal system approach’, Journal of Econometrics 134(3), 419–440.
Paper not yet in RePEc: Add citation now
Kumbhakar, S. C., Ghosh, S. & McGuckin, J. T. (1991), ‘A generalized production frontier approach for estimating determinants of inefficiency in US diary farms’, Journal of Business & Economic Statistics 9(1), 279–286.
Kumbhakar, S. C., Lien, G. & Hardaker, J. B. (2014), ‘Technical efficiency in competing panel data models: A study of Norwegian grain farming’, Journal of Productivity Analysis 41(2), 321–337.
Kumbhakar, S. C., Park, B. U., Simar, L. & Tsionas, E. G. (2007), ‘Nonparametric stochastic frontiers: A local maximum likelihood approach’, Journal of Econometrics 137(1), 1–27.
- Kumbhakar, S. C., Parmeter, C. F. & Tsionas, E. (2013), ‘A zero inefficiency stochastic frontier estimator’, Journal of Econometrics 172(1), 66–76.
Paper not yet in RePEc: Add citation now
Kumbhakar, S. C., Tsionas, E. G. & Sipiläinen, T. (2009), ‘Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming’, Journal of Productivity Analysis 31(2), 151–161.
Kumbhakar, S. c., Wang, H.-J. & Horncastle, A. (2015), A Practitioners Guide to Stochastic Frontier Analysis Using Stata, Cambridge University Press, Cambridge, United Kingdom.
Kuosmanen, T. (2012), ‘Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model’, Energy Economics 34, 2189–2199.
Kuosmanen, T. & Fosgerau, M. (2009), ‘Neoclassical versus frontier production models? Testing for the skewness of regression residuals’, The Scandinavian Journal of Economics 111(2), 351–367.
Kuosmanen, T. & Kortelainen, M. (2012), ‘Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints’, Journal of Productivity Analysis 38(1), 11–28.
Kuosmanen, T., Johnson, A. & Saastamoinen, A. (2015), Stochastic nonparametric approach to efficiency analysis: A unified framework, in J. Zhu, ed., ‘Data Envelopment Analysis’, International Series in Operations Research & Management Science, Springer Science, New York., chapter 7, pp. 191–244.
Kutlu, L. (2010), ‘Battese-Coelli estimator with endogenous regressors’, Economics Letters 109, 79–81.
Latruffe, L., Bravo-Ureta, B. E., Carpentier, A., Desjeux, Y. & Moreira, V. H. (2017), ‘Subsidies and technical efficiency in agriculture: Evidence from European dairy farms’, American Journal of Agricultural Economics 99, 783–799.
- Lee, L. (1983), ‘A test for distributional assumptions for the stochastic frontier function’, Journal of Econometrics 22(2), 245–267.
Paper not yet in RePEc: Add citation now
Lee, L.-F. & Tyler, W. G. (1978), ‘The stochastic frontier production function and average efficiency: An empirical analysis’, Journal of Econometrics 7, 385–389.
- Lee, Y. & Schmidt, P. (1993), A production frontier model with flexible temporal variation in technical efficiency, in K. L. H. Fried & S. Schmidt, eds, ‘The Measurement of Productive Efficiency’, Oxford University Press, Oxford, United Kingdom.
Paper not yet in RePEc: Add citation now
Li, D., Simar, L. & Zelenyuk, V. (2016), ‘Generalized nonparametric smoothing with mixed discrete and continuous data’, Computational Statistics and Data Analysis 100, 424–444.
- Li, Q. (1996), ‘Estimating a stochastic production frontier when the adjusted error is symmetric’, Economics Letters 52(3), 221–228.
Paper not yet in RePEc: Add citation now
Li, Q. & Racine, J. (2007), Nonparametric Econometrics: Theory and Practice, Princeton University Press.
Lien, G., Kumbhakar, S. C. & Hardaker, J. B. (2017), ‘Accounting for risk in productivity analysis: an application to Norwegian dairy farming’, Journal of Productivity Analysis 47(3), 247–257.
Liu, C., Laporte, A. & Ferguson, B. S. (2008), ‘The quantile regression approach to efficiency measurement: Insights from Monte Carlo simulations’, Health Economics 17, 1073–1087.
- Lovell, C. A. K. (1993), Production frontiers and productive efficiency, in C. A. K. L. H. O. Fried & S. S. Schmidt, eds, ‘The Measurement of Productive Efficiency’, Oxford University Press, Oxford, United Kingdom, chapter 1.
Paper not yet in RePEc: Add citation now
- Martins-Filho, C. B. & Yao, F. (2015), ‘Semiparametric stochastic frontier estimation via profile likelihood’, Econometric Reviews 34(4), 413–451.
Paper not yet in RePEc: Add citation now
- Materov, I. S. (1981), ‘On full identification of the stochastic production frontier model (in Russian)’, Ekonomika i Matematicheskie Metody 17, 784–788.
Paper not yet in RePEc: Add citation now
McFadden, D. (1989), ‘A method of simulated moments for estimation of discrete response models without numerical integration’, Econometrica 57(5), 995–1026.
- Meeusen, W. & van den Broeck, J. (1977a), ‘Efficiency estimation from Cobb-Douglas production functions with composed error’, International Economic Review 18(2), 435–444.
Paper not yet in RePEc: Add citation now
Meeusen, W. & van den Broeck, J. (1977b), ‘Technical efficiency and dimension of the firm: Some results on the use of frontier production functions’, Empirical Economics 2(2), 109–122.
- Mundlak, Y. (1961), ‘Empirical production function free of management bias’, Journal of Farm Economics 43(1), 44–56.
Paper not yet in RePEc: Add citation now
Mutter, R. L., Greene, W. H., Spector, W., Rosko, M. D. & Mukamel, D. B. (2013), ‘Investigating the impact of endogeneity on inefficiency estimates in the application of stochastic frontier analysis to nursing homes’, Journal of Productivity Analysis 39(1), 101–110.
- Neyman, J. & Scott, E. L. (1948), ‘Consistent estimation from partially consistent observations’, Econometrica 16, 1–32.
Paper not yet in RePEc: Add citation now
- Nguyen, N. B. (2010), Estimation of technical efficiency in stochastic frontier analysis, PhD thesis, Bowling Green State University.
Paper not yet in RePEc: Add citation now
- Noh, H. (2014), ‘Frontier estimation using kernel smoothing estimators with data transformation’, Journal of the Korean Statistical Society 43, 503–512.
Paper not yet in RePEc: Add citation now
- O’Donnell, C. J., Rao, D. S. P. & Battese, G. E. (2008), ‘Metafrontier frameworks for the study of firm-level efficiencies and technology ratios’, Empirical Economics 34, 231–255.
Paper not yet in RePEc: Add citation now
- O’Hagan, A. & Leonard, T. (1976), ‘Bayes estimation subject to uncertainty about parameter constraints’, Biometrika 63(1), 201–203.
Paper not yet in RePEc: Add citation now
Olson, J. A., Schmidt, P. & Waldman, D. A. (1980), ‘A Monte Carlo study of estimators of stochastic frontier production functions’, Journal of Econometrics 13, 67–82.
Orea, L. & Kumbhakar, S. C. (2004), ‘Efficiency measurement using a latent class stochastic frontier model’, Empirical Economics 29(1), 169–183.
Papadopoulos, A. (2015), ‘The half-normal specification for the two-tier stochastic frontier model’, Journal of Productivity Analysis 43(2), 225–230.
Park, B. U., Simar, L. & Zelenyuk, V. (2015), ‘Categorical data in local maximum likelihood: theory and applications to productivity analysis’, Journal of Productivity Analysis 43(1), 199–214.
- Parmeter, C. F. & Kumbhakar, S. C. (2014), ‘Efficiency Analysis: A Primer on Recent Advances’, Foundations and Trends in Econometrics 7(3-4), 191–385.
Paper not yet in RePEc: Add citation now
Parmeter, C. F. & Zelenyuk, V. (2016), A bridge too far? the state of the art in combining the virtues of stochastic frontier analysis and data envelopment analysis. University of Miami Working Paper 2016-10.
- Parmeter, C. F., Wang, H.-J. & Kumbhakar, S. C. (2017), ‘Nonparametric estimation of the determinants of inefficiency’, Journal of Productivity Analysis 47(3), 205–221.
Paper not yet in RePEc: Add citation now
Paul, S. & Shankar, S. (2017), An alternative specification for technical efficiency effects in a stochastic frontier production function. Crawford School Working Paper 1703.
Pitt, M. M. & Lee, L.-F. (1981), ‘The measurement and sources of technical inefficiency in the Indonesian weaving industry’, Journal of Development Economics 9(1), 43–64.
Polachek, S. W. & Yoon, B. J. (1987), ‘A two-tiered earnings frontier estimation of employer and employee information in the labor market’, The Review of Economics and Statistics 69(2), 296–302.
Polachek, S. W. & Yoon, B. J. (1996), ‘Panel estimates of a two-tiered earnings frontier’, Journal of Applied Econometrics 11(2), 169–178.
Racine, J. S. & Li, Q. (2004), ‘Nonparametric estimation of regression functions with both categorical and continuous data’, Journal of Econometrics 119(1), 99–130.
Reifschneider, D. & Stevenson, R. (1991), ‘Systematic departures from the frontier: A framework for the analysis of firm inefficiency’, International Economic Review 32(1), 715–723.
- Richmond, J. (1974), ‘Estimating the efficiency of production’, International Economic Review 15(2), 515– 521.
Paper not yet in RePEc: Add citation now
- Ritter, C. & Simar, L. (1997), ‘Pitfalls of normal-gamma stochastic frontier models’, Journal of Productivity Analysis 8(2), 167–182.
Paper not yet in RePEc: Add citation now
- Robinson, P. M. (1988), ‘Root-n consistent semiparametric regression’, Econometrica 56, 931–954.
Paper not yet in RePEc: Add citation now
Ruggiero, J. (1999), ‘Efficiency estimation and error decomposition in the stochastic frontier model: A Monte Carlo analysis’, European Journal of Operational Research 115(6), 555–563.
- Schmidt, P. (1976), ‘On the statistical estimation of parametric frontier production functions’, The Review of Economics and Statistics 58(2), 238–239.
Paper not yet in RePEc: Add citation now
- Schmidt, P. (2011), ‘One-step and two-step estimation in SFA models’, Journal of Productivity Analysis 36(2), 201–203.
Paper not yet in RePEc: Add citation now
- Schmidt, P. & Sickles, R. C. (1984), ‘Production frontiers and panel data’, Journal of Business & Economic Statistics 2(2), 367–374.
Paper not yet in RePEc: Add citation now
- Silvapulle, M. & Sen, P. (2005), Constrained Statistical Inference, Wiley, Hoboken, New Jersey.
Paper not yet in RePEc: Add citation now
Simar, L. & Wilson, P. W. (2007), ‘Estimation and inference in two-stage, semi-parametric models of production processes’, Journal of Econometrics 136(1), 31–64.
- Simar, L. & Wilson, P. W. (2010), ‘Inferences from cross-sectional, stochastic frontier models’, Econometric Reviews 29(1), 62–98.
Paper not yet in RePEc: Add citation now
- Simar, L. & Wilson, P. W. (2011), ‘Two-stage DEA: Caveat emptor’, Journal of Productivity Analysis 36(2), 205–218.
Paper not yet in RePEc: Add citation now
- Simar, L. & Wilson, P. W. (2013), ‘Estimation and inference in nonparametric frontier models: Recent developments and perspectives’, Foundations and Trends in Econometrics 5(2), 183–337.
Paper not yet in RePEc: Add citation now
- Simar, L. & Wilson, P. W. (2015), ‘Statistical approaches for nonparametric frontier models: A guided tour’, International Statistical Review 83(1), 77–110.
Paper not yet in RePEc: Add citation now
Simar, L. & Zelenyuk, V. (2011), ‘Stochastic FDH/DEA estimators for frontier analysis’, Journal of Productivity Analysis 36(1), 1–20.
- Simar, L., Lovell, C. A. K. & van den Eeckaut, P. (1994), Stochastic frontiers incorporating exogenous influences on efficiency. Discussion Papers No. 9403, Institut de Statistique, Universite de Louvain.
Paper not yet in RePEc: Add citation now
Simar, L., Van Keilegom, I. & Zelenyuk, V. (2017), ‘Nonparametric least squares methods for stochastic frontier models’, Journal of Productivity Analysis 47(3), 189–204.
- Solow, R. (1957), ‘Technical change and the aggregate production function’, The Review of Economics and Statistics 39(3), 312–320.
Paper not yet in RePEc: Add citation now
- Stevenson, R. (1980), ‘Likelihood functions for generalized stochastic frontier estimation’, Journal of Econometrics 13(1), 58–66.
Paper not yet in RePEc: Add citation now
Stiglitz, J. E. & Greenwald, B. C. (1986), ‘Externalities in economies with imperfect information and incomplete markets’, Quarterly Journal of Economics 101(2), 229–264.
- Taube, R. (1988), Möglichkeiten der effizienzmess ung von öffentlichen verwaltungen. Duncker & Humbolt GmbH, Berlin.
Paper not yet in RePEc: Add citation now
- Tibshirani, R. & Hastie, T. (1987), ‘Local likelihood estimation’, Journal of the American Statistical Association 82, 559–568.
Paper not yet in RePEc: Add citation now
Timmer, C. P. (1971), ‘Using a probabilistic frontier production function to measure technical efficiency’, The Journal of Political Economy 79(4), 776–794.
Tran, K. C. & Tsionas, E. G. (2009), ‘Estimation of nonparametric inefficiency effects stochastic frontier models with an application to British manufacturing’, Economic Modelling 26, 904–909.
Tran, K. C. & Tsionas, E. G. (2013), ‘GMM estimation of stochastic frontier models with endogenous regressors’, Economics Letters 118, 233–236.
- Tsionas, E. G. (2007), ‘Efficiency measurement with the Weibull stochastic frontier’, Oxford Bulletin of Economics and Statistics 69(5), 693–706.
Paper not yet in RePEc: Add citation now
Tsionas, E. G. (2012), ‘Maximum likelihood estimation of stochastic frontier models by the Fourier transform ’, Journal of Econometrics 170(2), 234–248.
- Uekusa, M. & Torii, A. (1985), ‘Stochastic production functions: An application to Japanese manufacturing industry (in Japanese)’, Keizaigaku Ronsyu (Journal of Economics) 51(1), 2–23.
Paper not yet in RePEc: Add citation now
- URL: http://CRAN.R-Project.org/package=frontier Coelli, T. J. (1995), ‘Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis’, Journal of Productivity Analysis 6(4), 247–268.
Paper not yet in RePEc: Add citation now
Waldman, D. M. (1982), ‘A stationary point for the stochastic frontier likelihood’, Journal of Econometrics 18(1), 275–279.
Wang, H.-J. (2002), ‘Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontier model’, Journal of Productivity Analysis 18(2), 241–253.
Wang, H.-J. & Ho, C.-W. (2010), ‘Estimating fixed-effect panel stochastic frontier models by model transformation ’, Journal of Econometrics 157(2), 286–296.
Wang, H.-J. & Schmidt, P. (2002), ‘One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels’, Journal of Productivity Analysis 18, 129–144.
Wang, W. S. & Schmidt, P. (2009), ‘On the distribution of estimated technical efficiency in stochastic frontier models’, Journal of Econometrics 148(1), 36–45.
Wang, W. S., Amsler, C. & Schmidt, P. (2011), ‘Goodness of fit tests in stochastic frontier models’, Journal of Productivity Analysis 35(1), 95–118.
Wheat, P., Greene, B. & Smith, A. (2014), ‘Understanding prediction intervals for firm specific inefficiency scores from parametric stochastic frontier models’, Journal of Productivity Analysis 42, 55–65.
White, H. (1980), ‘A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity ’, Econometrica 48, 817–838.
- Winsten, C. B. (1957), ‘Discussion on Mr. Farrell’s paper’, Journal of the Royal Statistical Society Series A, General 120(3), 282–284.
Paper not yet in RePEc: Add citation now
Wooldridge, J. M. (2010), Econometric Analysis of Cross Section and Panel Data, 2nd edn, MIT Press, Cambridge, Massachusetts.