- A. Bhaskar, E. Chung, et al. Passenger segmentation using smart card data. IEEE Transactions on intelligent transportation systems, 16(3):1537–1548, 2015.
Paper not yet in RePEc: Add citation now
- A.-S. Briand, E. Côme, M. Trépanier, and L. Oukhellou. Analyzing year-to-year changes in public transport passenger behaviour using smart card data. Transportation Research Part C: Emerging Technologies, 79:274–289, 2017.
Paper not yet in RePEc: Add citation now
- B. Agard, C. Morency, and M. Trépanier. Mining public transport user behaviour from smart card data. IFAC Proceedings Volumes, 39(3):399–404, 2006.
Paper not yet in RePEc: Add citation now
- C. Chen, J. Ma, Y. Susilo, Y. Liu, and M. Wang. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation research part C: emerging technologies, 68:285–299, 2016.
Paper not yet in RePEc: Add citation now
C. Raux, T.-Y. Ma, and E. Cornelis. Variability in daily activity-travel patterns: the case of a one-week travel diary. European transport research review, 8(4):26, 2016. R. Schlich and K. W. Axhausen. Habitual travel behaviour: evidence from a six-week travel diary.
- E. Deschaintres, C. Morency, and M. Trépanier. Analyzing transit user behavior with 51 weeks of smart card data. Transportation Research Record, page 0361198119834917, 2019.
Paper not yet in RePEc: Add citation now
- E. I. Pas and F. S. Koppelman. An examination of the determinants of day-to-day variability in individuals’ urban travel behavior. Transportation, 14(1):3–20, 1987.
Paper not yet in RePEc: Add citation now
- E. I. Pas. Intrapersonal variability and model goodness-of-fit. Transportation Research Part A: General, 21(6):431–438, 1987.
Paper not yet in RePEc: Add citation now
E. Manley, C. Zhong, and M. Batty. Spatiotemporal variation in travel regularity through transit user profiling. Transportation, 45(3):703–732, 2018. C. Morency, M. Trépanier, and B. Agard. Measuring transit use variability with smart-card data.
- E. Pas. Multiday samples, parameter estimation precision, and data collection costs for least squares regression trip-generation models. Environment and Planning A, 18(1):73–87, 1986.
Paper not yet in RePEc: Add citation now
- F. Devillaine, M. Munizaga, and M. Trépanier. Detection of activities of public transport users by analyzing smart card data. Transportation Research Record: Journal of the Transportation Research Board, (2276):48–55, 2012.
Paper not yet in RePEc: Add citation now
- G. Goulet-Langlois, H. N. Koutsopoulos, and J. Zhao. Inferring patterns in the multi-week activity sequences of public transport users. Transportation Research Part C: Emerging Technologies, 64:1–16, 2016.
Paper not yet in RePEc: Add citation now
- G. Goulet-Langlois, H. N. Koutsopoulos, Z. Zhao, and J. Zhao. Measuring regularity of individual travel patterns. IEEE Transactions on Intelligent Transportation Systems, 19(5):1583–1592, 2018. S. Hanson and J. Huff. Classification issues in the analysis of complex travel behavior.
Paper not yet in RePEc: Add citation now
- J. A. Morris and M. J. Gardner. Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. British Medical Journal (Clinical Research Edition), 296(6632): 1313–1316, 1988.
Paper not yet in RePEc: Add citation now
- J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer series in statistics New York, 2001.
Paper not yet in RePEc: Add citation now
- J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301):236–244, 1963.
Paper not yet in RePEc: Add citation now
- J. O. Huff and S. Hanson. Repetition and variability in urban travel. Geographical Analysis, 18 (2):97–114, 1986. P. Jones and M. Clarke. The significance and measurement of variability in travel behaviour.
Paper not yet in RePEc: Add citation now
M. Bagchi and P. R. White. The potential of public transport smart card data. Transport Policy, 12(5):464–474, 2005.
- M. Munizaga, F. Devillaine, C. Navarrete, and D. Silva. Validating travel behavior estimated from smartcard data. Transportation Research Part C: Emerging Technologies, 44:70–79, 2014.
Paper not yet in RePEc: Add citation now
- M.-P. Pelletier, M. Trépanier, and C. Morency. Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4):557–568, 2011.
Paper not yet in RePEc: Add citation now
- P. Bonnel. Prévision de la demande de transport. Presses de l’École Nationale des Ponts et Chaussées, Paris, 425p, 2002.
Paper not yet in RePEc: Add citation now
- S. Hanson and O. J. Huff. Systematic variability in repetitious travel. Transportation, 15(1-2): 111–135, 1988.
Paper not yet in RePEc: Add citation now
T. Gärling and K. W. Axhausen. Introduction: Habitual travel choice. Transportation, 30(1):1–11, 2003.
- Transportation, 13(3):271–293, 1986. S. Hanson and J. O. Huff. Assessing day-to-day variability in complex travel patterns.
Paper not yet in RePEc: Add citation now
- X. Ma, Y.-J. Wu, Y. Wang, F. Chen, and J. Liu. Mining smart card data for transit riders’ travel patterns. Transportation Research Part C: Emerging Technologies, 36:1–12, 2013.
Paper not yet in RePEc: Add citation now
Y. O. Susilo and K. W. Axhausen. Repetitions in individual daily activity–travel–location patterns: a study using the herfindahl–hirschman index. Transportation, 41(5):995–1011, 2014.
- Z. Zhao, H. N. Koutsopoulos, and J. Zhao. Individual mobility prediction using transit smart card data. Transportation research part C: emerging technologies, 89:19–34, 2018.
Paper not yet in RePEc: Add citation now