Nothing Special   »   [go: up one dir, main page]

create a website
Electricity Price Forecasting by Averaging Dynamic Factor Models. (2016). Garca-Martos, Carolina ; Bastos, Guadalupe ; Alonso, Andrs M.
In: Energies.
RePEc:gam:jeners:v:9:y:2016:i:8:p:600-:d:74917.

Full description at Econpapers || Download paper

Cited: 9

Citations received by this document

Cites: 41

References cited by this document

Cocites: 21

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Estimation of a dynamic multi-level factor model with possible long-range dependence. (2023). Rodriguez-Caballero, Vladimir C ; Ergemen, Yunus Emre.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:39:y:2023:i:1:p:405-430.

    Full description at Econpapers || Download paper

  2. Multistage optimization filter for trend?based short?term forecasting. (2022). Vinogradov, Dmitri ; Kellard, Neil ; Zafar, Usman.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:2:p:345-360.

    Full description at Econpapers || Download paper

  3. A robust procedure to build dynamic factor models with cluster structure. (2020). Galeano, Pedro ; Alonso, Andres M ; Pea, Daniel.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:216:y:2020:i:1:p:35-52.

    Full description at Econpapers || Download paper

  4. Selection of calibration windows for day-ahead electricity price forecasting. (2018). Weron, Rafał ; Serafin, Tomasz ; Marcjasz, Grzegorz.
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1806.

    Full description at Econpapers || Download paper

  5. Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting. (2018). Weron, Rafał ; Serafin, Tomasz ; Marcjasz, Grzegorz.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:9:p:2364-:d:168385.

    Full description at Econpapers || Download paper

  6. Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks. (2018). Weron, Rafał ; Ziel, Florian.
    In: Energy Economics.
    RePEc:eee:eneeco:v:70:y:2018:i:c:p:396-420.

    Full description at Econpapers || Download paper

  7. Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks. (2018). Weron, Rafał ; Ziel, Florian.
    In: Papers.
    RePEc:arx:papers:1805.06649.

    Full description at Econpapers || Download paper

  8. Recent Advances in Energy Time Series Forecasting. (2017). Riquelme, Jose C ; Troncoso, Alicia ; Martinez-Alvarez, Francisco.
    In: Energies.
    RePEc:gam:jeners:v:10:y:2017:i:6:p:809-:d:101438.

    Full description at Econpapers || Download paper

  9. BIAS correction for dynamic factor models. (2017). Bastos, Guadalupe ; Garcia-Martos, Carolina ; Alonso, Andres Modesto .
    In: DES - Working Papers. Statistics and Econometrics. WS.
    RePEc:cte:wsrepe:24029.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Alonso, A.; García-Martos, C.; Rodríguez, J.; Sánchez, M. Seasonal Dynamic Factor Analysis and Bootstrap Inference: Application to Electricity Market Forecasting. Technometrics 2011, 53, 137–151.
    Paper not yet in RePEc: Add citation now
  2. Bello, A.; Reneses, J.; Muñoz, A. Medium-Term Probabilistic Forecasting of Extremely Low Prices in Electricity Markets: Application to the Spanish Case. Energies 2016, 9, 193–219.

  3. Billio, M.; Casarin, R.; Ravazzolo, F.; Van Dijk, H. Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data. Tinbergen Institute Discussion Paper, 2011. Available online: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1967435 (accessed on 18 July 2016).

  4. Bjørnland, H.; Gerdrup, K.; Jore, A.; Smith, C.; Thorsrud, L. Does forecast combination improve Norges Bank inflation forecasts? Oxford Bull. Econ. Stat. 2012, 74, 163–179, doi:10.1111/j.1468-0084.2011.00639.

  5. Bordignon, S.; Bunn, D.; Lisi, F.; Nan, F. Combining day-ahead forecasts for British electricity prices. Energy Econ. 2013, 35, 88–103.

  6. Chipman, H.; George, E.; McCulloch, R. The practical implementation of Bayesian model selection. IMS Lect. Notes 2001, 38, 70–134.
    Paper not yet in RePEc: Add citation now
  7. Clemen, R. Combining forecasts: A review and annotated bibliography. Int. J. Forecast. 1989, 5, 559–583.

  8. Conejo, A.; Contreras, J.; Espínola, R.; Plazas, M. Forecasting electricity prices for a day-ahead poll-based electric energy market. Int. J. Forecast. 2005, 21, 435–462.

  9. Cremers, K. Stock return predictability: A Bayesian model selection perspective. Rev. Financ. Stud. 2002, 15, 1223–1249.

  10. Elliott, G.; Granger, C.; Timmermann, A. Handbook of Economic Forecasting; North-Holland: Oxford, UK, 2006; Volume 1.

  11. García-Martos, C.; Caro, E.; Sánchez, M. Electricity price forecasting accounting for renewable energies: Optimal combined forecasts. J. Oper. Res. Soc. 2015, 66, 871–884.

  12. García-Martos, C.; Rodríguez, J.; Sánchez, M. Forecasting electricity prices by extracting dynamic common factors: Application to the Iberian market. IET Gener. Transm. Distrib. 2012, 6, 11–20.
    Paper not yet in RePEc: Add citation now
  13. García-Martos, C.; Rodríguez, J.; Sánchez, M. Mixed Models for Short-Run Forecasting of Electricity Prices: Application for the Spanish Market. IEEE Trans. Power Syst. 2007, 22, 544–552.
    Paper not yet in RePEc: Add citation now
  14. Geweke, J. The Dynamic Factor Analysis of Economic Time Series. Latent Variables in Socio-Economic Models; North-Holland: Amsterdam, The Netherlands, 1977.
    Paper not yet in RePEc: Add citation now
  15. Huisman, R.; Huurman, C.; Mahieu, R. Hourly electricity prices in day-ahead markets. Energy Econ. 2007, 29, 240–248.

  16. Hyndman, R.; Koehler, A. Another look at measures of accuracy. Int. J. Forecast. 2006, 22, 679–688.

  17. Koop, G.; Potter, S. Forecasting in Large Macroeconomic Panels Using Bayesian Model Averaging; Federal Reserve Bank of New York: New York, NY, USA, 2003; Volume 163.

  18. Kuzin, V.; Marcellino, M.; Schumacher, C. Pooling versus model selection for nowcasting GDP with many predictors: Empirical evidence for six industrialized countries. J. Appl. Econom. 2012, 28, 32–411.
    Paper not yet in RePEc: Add citation now
  19. Leamer, E. Specification Searches: Ad Hoc Inference with Nonexperimental Data; John Wiley & Sons: New York, NY, USA, 1978.
    Paper not yet in RePEc: Add citation now
  20. Lee, R.; Carter, L. Modelling and forecasting U.S. mortality. J. Am. Stat. Assoc. 1992, 87, 659–671.
    Paper not yet in RePEc: Add citation now
  21. Maciejowska, K.; Weron, R. Forecasting of daily electricity prices with factor models: Utilizing intra-day and inter-zone relationships. Comput. Stat. 2015, 30, 805–819.

  22. Martínez-lvarez, F.; Troncoso, A.; Asencio-Cortés, G.; Riquelme, J. A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting. Energies 2015, 8, 13162–13193.

  23. Monteiro, C.; Fernandez-Jimenez, L.; Ramirez-Rosado, I. Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market. Energies 2015, 8, 10464–10486.

  24. Montgomery, D.C. Design and Analysis of Experiments; Wiley: New York, NY, USA, 1984. c 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
    Paper not yet in RePEc: Add citation now
  25. Nowotarskia, J.; Raviv, E.; Trückc, S.; Werona, R. An empirical comparison of alternate schemes for combining electricity spot price forecasts. Energy Econ. 2014, 46, 395–412. Energies 2016, 9, 600 21 of 21

  26. Panagiotelis, A.; Smith, M. Bayesian Density Forecasting of intraday electricity prices using multivariate skewed t distributions. Int. J. Forecast. 2008, 24, 710–727.

  27. Peña, D.; Poncela, P. Forecasting with Nonstationary Dynamic Factor Models. J. Econom. 2004, 119, 291–321.

  28. Peña, D.; Poncela, P. Nonstationary dynamic factor analysis. J. Stat. Plan. Inference 2006, 136, 1237–1257.
    Paper not yet in RePEc: Add citation now
  29. Poncela, P.; Rodriguez, J.; Sánchez-Mangas, R.; Senra, E. Forecast combination through dimension reduction techniques. J. Forecast. 2011, 27, 224–237.

  30. Raftery, A. Bayesian Model Selection in Social Research. Sociol. Methodol. 1995, 25, 111–163.
    Paper not yet in RePEc: Add citation now
  31. Raftery, A.; Madigan, D.; Hoeting, J. Bayesian model averaging for linear regression models. J. Am. Stat. Assoc. 1997, 92, 179–191.
    Paper not yet in RePEc: Add citation now
  32. Raviv, E.; Bouwman, K.; Van Dijk, D. Forecasting day-ahead electricity prices: Utilizing hourly prices. Energy Econ. 2015, 50, 227–239.

  33. Sánchez, I. Short-term prediction of wind energy production. Int. J. Forecast. 2006, 22, 43–56.
    Paper not yet in RePEc: Add citation now
  34. Sargent, T.; Sims, C. Business Cycle Modelling Without Pretending to Have Too Much a Priori Economic Theory, New Methods in Business Cycle Research; Federal Reserve Bank of Minneapolis: Minneapolis, MN, USA, 1977; Volume 55.
    Paper not yet in RePEc: Add citation now
  35. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464.
    Paper not yet in RePEc: Add citation now
  36. Stock, J.; Watson, M. Combination forecasts of output growth in a seven country dataset. J. Forecast. 2004, 23, 405–430.

  37. Stock, J.; Watson, M. Forecasting using principal components from a large number of predictors. J. Am. Stat. Assoc. 2002, 97, 1167–1179.

  38. Swanson, N.; Zeng, T. Choosing Among Competing Econometric Forecasts: Regression-Based Forecast Combination Using Model Selection. J. Forecast. 2001, 20, 425–440.

  39. Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081.

  40. Wright, J. Bayesian Model Averaging and exchange rate forecasts. J. Econom. 2008, 146, 329–341.

  41. Yang, Y. Combining forecasting procedures: some theoretical results. Econom. Theory 2004, 20, 176–222.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets. (2024). Georghiou, George E ; Kyprianou, Andreas ; Loizidis, Stylianos.
    In: Applied Energy.
    RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004410.

    Full description at Econpapers || Download paper

  2. Probabilistic forecasting of electricity prices using an augmented LMARX-model. (2023). Sheybanivaziri, Samaneh ; Andersson, Jonas.
    In: Discussion Papers.
    RePEc:hhs:nhhfms:2023_011.

    Full description at Econpapers || Download paper

  3. Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model. (2022). Wennersten, Ronald ; Sun, Qie ; Li, Hailong ; Yan, Ruifeng ; Ma, Cuiping ; Bai, Feifei ; Liu, Luyao.
    In: Energy.
    RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003206.

    Full description at Econpapers || Download paper

  4. Probabilistic Day-Ahead Wholesale Price Forecast: A Case Study in Great Britain. (2021). Verma, Jake ; Caudron, Julien ; Haben, Stephen.
    In: Forecasting.
    RePEc:gam:jforec:v:3:y:2021:i:3:p:38-632:d:623967.

    Full description at Econpapers || Download paper

  5. Electricity Markets during the Liberalization: The Case of a European Union Country. (2021). Kriaj, Alan ; Bojnec, Tefan.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:14:p:4317-:d:596330.

    Full description at Econpapers || Download paper

  6. Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks. (2020). Bello, Antonio ; Bunn, Derek W ; de Marcos, Rodrigo A ; Reneses, Javier.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:20:p:5452-:d:431117.

    Full description at Econpapers || Download paper

  7. Short-Term Electricity Price Forecasting with a Composite Fundamental-Econometric Hybrid Methodology. (2019). Reneses, Javier ; Bello, Antonio ; de Marcos, Rodrigo A.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:6:p:1067-:d:215468.

    Full description at Econpapers || Download paper

  8. Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors. (2019). Garcia, Agustin ; Garcia-Garcia, Agustin ; Jaramillo-Moran, Miguel A.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:23:p:4439-:d:289705.

    Full description at Econpapers || Download paper

  9. Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence. (2018). Zambotti, Stefano ; Grilli, Gianluca ; Pezzutto, Simon ; Dunjic, Stefan .
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:6:p:1460-:d:150820.

    Full description at Econpapers || Download paper

  10. Probabilistic mid- and long-term electricity price forecasting. (2018). Ziel, Florian ; Steinert, Rick.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:94:y:2018:i:c:p:251-266.

    Full description at Econpapers || Download paper

  11. Recent advances in electricity price forecasting: A review of probabilistic forecasting. (2018). Weron, Rafał ; Nowotarski, Jakub.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:81:y:2018:i:p1:p:1548-1568.

    Full description at Econpapers || Download paper

  12. Probabilistic Price Forecasting for Day-Ahead and Intraday Markets: Beyond the Statistical Model. (2017). Reis, Marisa ; Filipe, Jorge ; Andrade, Jose R ; Bessa, Ricardo J.
    In: Sustainability.
    RePEc:gam:jsusta:v:9:y:2017:i:11:p:1990-:d:117115.

    Full description at Econpapers || Download paper

  13. Forecasting Models of Electricity Prices. (2017). Contreras, Javier.
    In: Energies.
    RePEc:gam:jeners:v:10:y:2017:i:2:p:160-:d:89090.

    Full description at Econpapers || Download paper

  14. Electricity prices forecasting by averaging dynamic factor models. (2017). Garcia-Martos, Carolina ; Bastos, Guadalupe ; Alonso, Andres Modesto .
    In: DES - Working Papers. Statistics and Econometrics. WS.
    RePEc:cte:wsrepe:24028.

    Full description at Econpapers || Download paper

  15. Recent advances in electricity price forecasting: A review of probabilistic forecasting. (2016). Weron, Rafał ; Nowotarski, Jakub.
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1607.

    Full description at Econpapers || Download paper

  16. Short-Term Price Forecasting Models Based on Artificial Neural Networks for Intraday Sessions in the Iberian Electricity Market. (2016). Ramirez-Rosado, Ignacio J ; Fernandez-Jimenez, Alfredo L ; Conde, Pedro ; Monteiro, Claudio.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:9:p:721-:d:77596.

    Full description at Econpapers || Download paper

  17. Electricity Price Forecasting by Averaging Dynamic Factor Models. (2016). Garca-Martos, Carolina ; Bastos, Guadalupe ; Alonso, Andrs M.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:8:p:600-:d:74917.

    Full description at Econpapers || Download paper

  18. Parametric Density Recalibration of a Fundamental Market Model to Forecast Electricity Prices. (2016). Reneses, Javier ; Bunn, Derek ; Bello, Antonio ; Muoz, Antonio.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:11:p:959-:d:83111.

    Full description at Econpapers || Download paper

  19. Long Term Expected Revenue of Wind Farms Considering the Bidding Admission Uncertainty. (2016). Yousefi, Gholamreza ; Bashi, Mazaher Haji ; Pillai, Jayakrishnan Radhakrishna ; Bak, Claus Leth.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:11:p:945-:d:83256.

    Full description at Econpapers || Download paper

  20. Mid-Term Electricity Market Clearing Price Forecasting with Sparse Data: A Case in Newly-Reformed Yunnan Electricity Market. (2016). Miao, Shumin ; Luo, Bin ; Cheng, Chuntian ; Wu, Xinyu.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:10:p:804-:d:79919.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-25 13:22:04 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.