Nothing Special   »   [go: up one dir, main page]

create a website
Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting. (2017). Zhang, Ningning ; Shang, Pengjian ; Lin, Aijing .
In: Physica A: Statistical Mechanics and its Applications.
RePEc:eee:phsmap:v:477:y:2017:i:c:p:161-173.

Full description at Econpapers || Download paper

Cited: 18

Citations received by this document

Cites: 50

References cited by this document

Cocites: 29

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Classical and fast parameters tuning in nearest neighbors with stop condition. (2023). Dakkon, Mohamed ; el Wahbi, Bouazza ; Tajmouati, Samya.
    In: OPSEARCH.
    RePEc:spr:opsear:v:60:y:2023:i:3:d:10.1007_s12597-023-00650-3.

    Full description at Econpapers || Download paper

  2. Machine learning in finance: Major applications, issues, metrics, and future trends. (2022). Almaskati, Nawaf.
    In: International Journal of Financial Engineering (IJFE).
    RePEc:wsi:ijfexx:v:09:y:2022:i:03:n:s2424786322500104.

    Full description at Econpapers || Download paper

  3. Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine. (2022). Ye, Cheng ; Vivian, Andrew ; Chen, Peng.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:313:y:2022:i:1:d:10.1007_s10479-021-04406-4.

    Full description at Econpapers || Download paper

  4. Forecasts for international financial series with VMD algorithms. (2022). Tse, Yiuman ; Luo, Zhidan ; Liu, Qingfu ; Guo, Wei.
    In: Journal of Asian Economics.
    RePEc:eee:asieco:v:80:y:2022:i:c:s1049007822000185.

    Full description at Econpapers || Download paper

  5. .

    Full description at Econpapers || Download paper

  6. .

    Full description at Econpapers || Download paper

  7. An Ensemble 3D Convolutional Neural Network for Spatiotemporal Soil Temperature Forecasting. (2021). Li, Qingliang ; Hao, Huibowen ; Yu, Fanhua .
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:16:p:9174-:d:615321.

    Full description at Econpapers || Download paper

  8. Clearness index forecasting: A comparative study between a stochastic realization method and a machine learning algorithm. (2021). Giesbrecht, Mateus ; Martins, Guilherme Santos.
    In: Renewable Energy.
    RePEc:eee:renene:v:180:y:2021:i:c:p:787-805.

    Full description at Econpapers || Download paper

  9. Crude oil market autocorrelation: Evidence from multiscale quantile regression analysis. (2021). Xu, Chao ; Zhao, Xiaojun ; Sun, Jie.
    In: Energy Economics.
    RePEc:eee:eneeco:v:98:y:2021:i:c:s0140988321001444.

    Full description at Econpapers || Download paper

  10. Stock Market Analysis with Text Data: A Review. (2021). Liu, Wei ; Prasad, Mukesh ; Chivukula, Aneesh ; Fataliyev, Kamaladdin.
    In: Papers.
    RePEc:arx:papers:2106.12985.

    Full description at Econpapers || Download paper

  11. Reducing Exchange Rate Risks in International Trade: A Hybrid Forecasting Approach of CEEMDAN and Multilayer LSTM. (2020). Chen, Sheng-Qun ; Sun, Qiubi ; Lin, Hualing.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:6:p:2451-:d:334986.

    Full description at Econpapers || Download paper

  12. Are there asymmetric linkages between African stocks and exchange rates?. (2020). Owusu Junior, Peterson ; Tweneboah, George.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:54:y:2020:i:c:s0275531919311559.

    Full description at Econpapers || Download paper

  13. Forecasting stock price movements with multiple data sources: Evidence from stock market in China. (2020). Xiao, Helu ; Liu, Qing ; Gao, Meng ; Zhou, Zhongbao.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318941.

    Full description at Econpapers || Download paper

  14. Analysis of EEMD-based quantile-in-quantile approach on spot- futures prices of energy and precious metals in India. (2020). Tiwari, Aviral ; Padhan, Hemachandra ; Owusu Junior, Peterson ; Alagidede, Imhotep.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420720300878.

    Full description at Econpapers || Download paper

  15. Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method. (2019). Wang, Jie ; Yu, Lean ; Liu, Ying ; Dai, Wei ; Dong, Jichang.
    In: International Journal of Information Technology & Decision Making (IJITDM).
    RePEc:wsi:ijitdm:v:18:y:2019:i:05:n:s0219622019500287.

    Full description at Econpapers || Download paper

  16. Disentangling the drivers of carbon prices in Chinas ETS pilots — An EEMD approach. (2019). Xu, Jia ; Liu, YU ; He, Gang ; Tan, Xiujie.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:139:y:2019:i:c:p:1-9.

    Full description at Econpapers || Download paper

  17. Photovoltaic Power Forecasting Based on EEMD and a Variable-Weight Combination Forecasting Model. (2018). Wang, Weijun ; Sun, Jianbo.
    In: Sustainability.
    RePEc:gam:jsusta:v:10:y:2018:i:8:p:2627-:d:160111.

    Full description at Econpapers || Download paper

  18. Estimating the impact of Chinas export policy on tin prices: a mode decomposition counterfactual analysis method. (2018). Zhu, Yongguang ; Ali, Saleem Hassan ; Cheng, Jinhua ; Xu, Deyi.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:59:y:2018:i:c:p:250-264.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Bannayan, M. ; Hoogenboom, G. Weather analogue: a tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach. 2008 Environ. Modell. Softw.. 23 703-713
    Paper not yet in RePEc: Add citation now
  2. Battista, B.M. ; Knapp, C. ; McGee, T. ; Goebel, V. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. 2007 Geophysics. 72 H29-H37
    Paper not yet in RePEc: Add citation now
  3. Brandsma, T. ; Buishand, T.A. Simulation of extreme precipitation in the rhine basin by nearest neighbour resampling. 1998 Hydrol. Earth Syst. Sci.. 2 195-209
    Paper not yet in RePEc: Add citation now
  4. Cao, L. ; Tay, F.E. Financial forecasting using support vector machines. 2001 Neural Comput. Appl.. 10 184-192
    Paper not yet in RePEc: Add citation now
  5. Castiglione, F. Forecasting price increments using an artificial neural network. 2001 Adv. Complex Syst.. 4 45-56
    Paper not yet in RePEc: Add citation now
  6. Chen, A.S. ; Leung, M.T. ; Daouk, H. Application of neural networks to an emerging financial market: forecasting and trading the Taiwan stock index. 2003 Comput. Oper. Res.. 30 901-923
    Paper not yet in RePEc: Add citation now
  7. Chu, C.-W. ; Zhang, G.P. A comparative study of linear and nonlinear models for aggregate retail sales forecasting. 2003 Int. J. Prod. Econ.. 86 217-231

  8. Coughlin, K. ; Tung, K.K. 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method. 2004 Adv. Space Res.. 34 323-329
    Paper not yet in RePEc: Add citation now
  9. Cover, T. ; Hart, P. Nearest neighbor pattern classification. 1967 IEEE Trans. Inform. Theory. 13 21-27
    Paper not yet in RePEc: Add citation now
  10. Davis, G.A. ; Nihan, N.L. Nonparametric regression and short-term freeway traffic forecasting. 1991 J. Transp. Eng.-ASCE. 117 178-188
    Paper not yet in RePEc: Add citation now
  11. Deboeck, G. Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets, Vol. 39. 1994 John Wiley & Sons:
    Paper not yet in RePEc: Add citation now
  12. Donaldson, R.G. ; Kamstra, M. An artificial neural network garch model for international stock return volatility. 1997 J. Empir. Finance. 4 17-46

  13. Echeverria, J. ; Crowe, J. ; Woolfson, M. ; Hayes Gill, B. Application of empirical mode decomposition to heart rate variability analysis. 2001 Med. Biol. Eng. Comput.. 39 471-479
    Paper not yet in RePEc: Add citation now
  14. Fernandez-Rodrıguez, F. ; Sosvilla-Rivero, S. ; Andrada-Felix, J. Exchange rate forecasts with simultaneous nearest neighbour methods: Evidence from the ems. 1999 Int. J. Forecast.. 15 383-392

  15. Flandrin, P. ; Gonçalves, P. ; Rilling, G. Emd equivalent filter banks, from interpretation to applications. 2005 World Sci.. 57-74
    Paper not yet in RePEc: Add citation now
  16. Flandrin, P. ; Rilling, G. ; Goncalves, P. Empirical mode decomposition as a filter bank. 2004 IEEE Signal Proc. Lett.. 11 112-114
    Paper not yet in RePEc: Add citation now
  17. Franses, P.H. ; Van Dijk, D. Forecasting stock market volatility using (nonlinear) garch models. 1996 J. Forecast.. 229-235
    Paper not yet in RePEc: Add citation now
  18. Gangopadhyay, S. ; Clark, M. ; Rajagopalan, B. Statistical downscaling using k-nearest neighbors. 2005 Water Resour. Res.. 41 -
    Paper not yet in RePEc: Add citation now
  19. Gao, Z.K. ; Jin, N.D. Scaling analysis of phase fluctuations in experimental three phase flows. 2011 Physica A. 390 3541-3550

  20. Grudnitski, G. ; Osburn, L. Forecasting s&p and gold futures prices: An application of neural networks. 1993 J. Futures Mark.. 13 631-643

  21. Guhathakurta, K. ; Mukherjee, I. ; Chowdhury, A.R. Empirical mode decomposition analysis of two different financial time series and their comparison. 2008 Chaos Solitons Fractals. 37 1214-1227
    Paper not yet in RePEc: Add citation now
  22. Hao, F. The applications of markov prediction method in stock market. 2006 Friends Sci.. 6 78-81
    Paper not yet in RePEc: Add citation now
  23. Huang, N.E. ; Shen, Z. ; Long, S.R. ; Wu, M.C. ; Shih, H.H. ; Zheng, Q. ; Yen, N.C. ; Tung, C.C. ; Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. 1998 En : Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 454. The Royal Society:
    Paper not yet in RePEc: Add citation now
  24. Hudak, A.T. ; Crookston, N.L. ; Evans, J.S. ; Hall, D.E. ; Falkowski, M.J. Nearest neighbor imputation of species level, plot-scale forest structure attributes from lidar data. 2008 Remote Sens. Environ.. 112 2232-2245
    Paper not yet in RePEc: Add citation now
  25. Liang, H. ; Lin, Z. ; McCallum, R. Artifact reduction in electrogastrogram based on empirical mode decomposition method. 2000 Med. Biol. Eng. Comput.. 38 35-41
    Paper not yet in RePEc: Add citation now
  26. Lin, A. ; Shang, P. ; Feng, G. ; Zhong, B. Application of empirical mode decomposition combined with k-nearest neighbors approach in financial time series forecasting. 2012 Fluct. Noise Lett.. 11 1250018-
    Paper not yet in RePEc: Add citation now
  27. Loh, C.H. ; Wu, T.C. ; Huang, N.E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near fault ground-motion characteristics and structural responses. 2001 Bull. Seismol. Soc. Amer.. 91 1339-1357
    Paper not yet in RePEc: Add citation now
  28. Loutridis, S. Damage detection in gear systems using empirical mode decomposition. 2004 Eng. Struct.. 26 1833-1841
    Paper not yet in RePEc: Add citation now
  29. Magnussen, S. ; Tomppo, E. ; McRoberts, R.E. A model assisted k-nearest neighbour approach to remove extrapolation bias. 2010 Scand. J. For. Res.. 25 174-184
    Paper not yet in RePEc: Add citation now
  30. McRoberts, R.E. Diagnostic tools for nearest neighbors techniques when used with satellite imagery. 2009 Remote Sens. Environ.. 113 489-499
    Paper not yet in RePEc: Add citation now
  31. McRoberts, R.E. Estimating forest attribute parameters for small areas using nearest neighbors techniques. 2012 Forest. Ecol. Manag.. 272 3-12
    Paper not yet in RePEc: Add citation now
  32. McRoberts, R.E. ; Tomppo, E.O. Remote sensing support for national forest inventories. 2007 Remote Sens. Environ.. 110 412-419
    Paper not yet in RePEc: Add citation now
  33. Meade, N. A comparison of the accuracy of short term foreign exchange forecasting methods. 2002 Int. J. Forecast.. 18 67-83

  34. Mehrotra, R. ; Sharma, A. Conditional resampling of hydrologic time series using multiple predictor variables: A k-nearest neighbour approach. 2006 Water Resour. Res.. 29 987-999
    Paper not yet in RePEc: Add citation now
  35. Neto, E.S. ; Custaud, M. ; Cejka, J. ; Abry, P. ; Frutoso, J. ; Gharib, D. ; Flandrin, P. Assessment of cardiovascular autonomic control by the empirical mode decomposition. 2004 Methods Inf. Med.. 43 60-65
    Paper not yet in RePEc: Add citation now
  36. Nothdurft, A. ; Saborowski, J. ; Breidenbach, J. Spatial prediction of forest stand variables. 2009 J. Forest Res.-Jpn.. 128 241-251
    Paper not yet in RePEc: Add citation now
  37. Pachori, R.B. ; Bajaj, V. Analysis of normal and epileptic seizure eeg signals using empirical mode decomposition. 2011 Comput. Methods Programs Biomed.. 104 373-381
    Paper not yet in RePEc: Add citation now
  38. Packalén, P. ; Maltamo, M. Predicting the plot volume by tree species using airborne laser scanning and aerial photographs. 2006 For. Sci.. 52 611-622
    Paper not yet in RePEc: Add citation now
  39. Ren, Y. ; Suganthan, P. Empirical mode decomposition-k nearest neighbor models for wind speed forecasting. 2014 J. Power Energy Eng.. 2 176-
    Paper not yet in RePEc: Add citation now
  40. Stock, J.H. ; Watson, M.W. A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series, Tech. rep.. 1998 National Bureau of Economic Research:

  41. Swanson, N.R. ; White, H. Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models. 1997 Int. J. Forecast.. 13 439-461

  42. Turkoglu, I. ; Kaymaz, E.D. A hybrid method based on artificial immune system and k-nn algorithm for better prediction of protein cellular localization sites. 2009 Appl. Soft Comput.. 9 497-502
    Paper not yet in RePEc: Add citation now
  43. Wang, T. ; Zhang, M. ; Yu, Q. ; Zhang, H. Comparing the applications of emd and eemd on time–frequency analysis of seismic signal. 2012 J. Appl. Geophys.. 83 29-34
    Paper not yet in RePEc: Add citation now
  44. Wang, Y. Predicting stock price using fuzzy grey prediction system. 2002 Expert Syst. Appl.. 22 33-38
    Paper not yet in RePEc: Add citation now
  45. Wu, Z. ; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. 2004 En : Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 460. The Royal Society:
    Paper not yet in RePEc: Add citation now
  46. Wu, Z. ; Huang, N.E. Ensemble empirical mode decomposition: a noise assisted data analysis method. 2009 Adv. Adapt. Data Anal.. 1 1-41
    Paper not yet in RePEc: Add citation now
  47. Yeh, J.R. ; Fan, S.-Z. ; Shieh, J.S. Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition. 2009 Med. Eng. Phys.. 31 92-100
    Paper not yet in RePEc: Add citation now
  48. Zhang, G.P. Time series forecasting using a hybrid arima and neural network model. 2003 Neurocomputing. 50 159-175
    Paper not yet in RePEc: Add citation now
  49. Zhang, X. ; Lai, K.K. ; Wang, S.Y. A new approach for crude oil price analysis based on empirical mode decomposition. 2008 Energy Econ.. 30 905-918

  50. Zhu, X. ; Wang, H. ; Xu, L. ; Li, H. Predicting stock index increments by neural networks: The role of trading volume under different horizons. 2008 Expert Syst. Appl.. 34 3043-3054
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Attending to Customer Attention: A Novel Deep Learning Method for Leveraging Multimodal Online Reviews to Enhance Sales Prediction. (2024). Zhang, Chenghong ; Xiao, Shuaiyong ; Huang, Lihua ; Chen, Gang ; Zhao, Huimin.
    In: Information Systems Research.
    RePEc:inm:orisre:v:35:y:2024:i:2:p:829-849.

    Full description at Econpapers || Download paper

  2. A theory of predictive sales analytics adoption. (2023). Heinitz, Nicolas ; Alavi, Sascha ; Habel, Johannes.
    In: AMS Review.
    RePEc:spr:amsrev:v:13:y:2023:i:1:d:10.1007_s13162-022-00252-0.

    Full description at Econpapers || Download paper

  3. Evaluating and Predicting the Long-Term Impact of the COVID-19 Pandemic on Manufacturing Sales within South Africa. (2023). Chikobvu, Delson ; Makoni, Tendai.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:12:p:9342-:d:1167642.

    Full description at Econpapers || Download paper

  4. Management and takeover decisions. (2023). Kazakis, Pantelis ; Delis, Manthos D ; Zopounidis, Constantin.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:304:y:2023:i:3:p:1256-1268.

    Full description at Econpapers || Download paper

  5. Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry. (2022). Chen, Yan ; Giri, Chandadevi.
    In: Forecasting.
    RePEc:gam:jforec:v:4:y:2022:i:2:p:31-581:d:843396.

    Full description at Econpapers || Download paper

  6. Retail forecasting: Research and practice. (2022). Kolassa, Stephan ; Ma, Shaohui ; Fildes, Robert.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:38:y:2022:i:4:p:1283-1318.

    Full description at Econpapers || Download paper

  7. Multi-view Latent Learning Applied to Fashion Industry. (2021). Craparotta, Giuseppe ; Meo, Rosa ; Gardino, Giovanni Battista.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v:23:y:2021:i:1:d:10.1007_s10796-020-10005-8.

    Full description at Econpapers || Download paper

  8. Management Practices and Takeover Decisions. (2021). Kazakis, Pantelis ; Zopounidis, Constantin ; Delis, Manthos D.
    In: Working Papers.
    RePEc:gla:glaewp:2021_10.

    Full description at Econpapers || Download paper

  9. Intraday shelf replenishment decision support for perishable goods. (2021). Stuckenschmidt, Heiner ; Huber, Jakob.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320301985.

    Full description at Econpapers || Download paper

  10. Economic Consequences of Road Traffic Injuries. Application of the Super Learner algorithm. (2020). Jones, Andrew ; Gabbe, B ; Harris, A ; Sriubaite, I.
    In: Health, Econometrics and Data Group (HEDG) Working Papers.
    RePEc:yor:hectdg:20/20.

    Full description at Econpapers || Download paper

  11. Will China Achieve Its Ambitious Goal?—Forecasting the CO 2 Emission Intensity of China towards 2030. (2020). Dong, Zhang ; Wei, Yigang ; Li, Yan.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:11:p:2924-:d:368330.

    Full description at Econpapers || Download paper

  12. Daily retail demand forecasting using machine learning with emphasis on calendric special days. (2020). Stuckenschmidt, Heiner ; Huber, Jakob.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:36:y:2020:i:4:p:1420-1438.

    Full description at Econpapers || Download paper

  13. Retail forecasting: research and practice. (2019). Fildes, Robert ; Kolassa, Stephan ; Ma, Shaohui.
    In: MPRA Paper.
    RePEc:pra:mprapa:89356.

    Full description at Econpapers || Download paper

  14. Sales forecasting in financial distribution: a comparison of quantitative forecasting methods. (2019). Šindelář, Jiří ; Indela, Jii.
    In: Journal of Financial Services Marketing.
    RePEc:pal:jofsma:v:24:y:2019:i:3:d:10.1057_s41264-019-00068-3.

    Full description at Econpapers || Download paper

  15. Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting. (2017). Zhang, Ningning ; Shang, Pengjian ; Lin, Aijing .
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:477:y:2017:i:c:p:161-173.

    Full description at Econpapers || Download paper

  16. Demand forecasting based on natural computing approaches applied to the foodstuff retail segment. (2016). Veiga, Claudimar Pereirada ; Tortato, Ubirat ; Santos, Leandro Dos ; Puchalski, Weslly ; Pereira, Cssia Rita ; da Veiga, Claudimar Pereira.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:31:y:2016:i:c:p:174-181.

    Full description at Econpapers || Download paper

  17. Multi-period-ahead forecasting with residual extrapolation and information sharing — Utilizing a multitude of retail series. (2016). Pinar, Efe ; Ali, Ozden Gur .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:2:p:502-517.

    Full description at Econpapers || Download paper

  18. Forecasting aggregate retail sales: The case of South Africa. (2015). Majumdar, Anandamayee ; GUPTA, RANGAN ; Balcilar, Mehmet ; Aye, Goodness C..
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:160:y:2015:i:c:p:66-79.

    Full description at Econpapers || Download paper

  19. Forecasting Aggregate Retail Sales: The Case of South Africa. (2014). Majumdar, Anandamayee ; GUPTA, RANGAN ; Balcilar, Mehmet ; Aye, Goodness C ; Balcilarauthor-Name, Mehmet .
    In: Working Papers.
    RePEc:emu:wpaper:15-21.pdf.

    Full description at Econpapers || Download paper

  20. Forecasting Aggregate Retail Sales: The Case of South Africa. (2013). Majumdar, Anandamayee ; GUPTA, RANGAN ; Balcilar, Mehmet ; Aye, Goodness C..
    In: Working Papers.
    RePEc:pre:wpaper:201312.

    Full description at Econpapers || Download paper

  21. Multi-step sales forecasting in automotive industry based on structural relationship identification. (2012). Kim, Jaebeom ; Sa-ngasoongsong, Akkarapol ; Suresh, R. P. ; Iyer, Parameshwaran S. ; Bukkapatnam, Satish T. S., .
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:140:y:2012:i:2:p:875-887.

    Full description at Econpapers || Download paper

  22. Temporal series and neural networks: a comparative analysis of techniques in the Brazilian retail sales forecast. (2011). de Angelo, Claudio Felisoni ; Zwicker, Ronaldo ; Nuno Manoel Martins Dias Fouto, ; Luppe, Marcos Roberto .
    In: Brazilian Business Review.
    RePEc:bbz:fcpbbr:v:8:y:2011:i:2:p:01-21.

    Full description at Econpapers || Download paper

  23. Future prospects of Iran, U.S and Turkeys Pistachio exports. (2011). Kalashami, Mohammad Kavoosi ; Pakravan, Mohammad Reza .
    In: International Journal of Agricultural Management and Development (IJAMAD).
    RePEc:ags:ijamad:143646.

    Full description at Econpapers || Download paper

  24. Forecasting Iran’s Rice Imports Trend During 2009-2013. (2011). Goodarzi, Mohammad Reza ; Alipour, Hamid Reza ; Pakravan, Mohammad Reza ; Kalashami, Mohammad Kavoosi .
    In: International Journal of Agricultural Management and Development (IJAMAD).
    RePEc:ags:ijamad:143492.

    Full description at Econpapers || Download paper

  25. A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. (2010). Wong, W. K. ; Guo, Z. X..
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:128:y:2010:i:2:p:614-624.

    Full description at Econpapers || Download paper

  26. Fashion retail forecasting by evolutionary neural networks. (2008). Au, Kin-Fan ; Yu, Yong ; Choi, Tsan-Ming.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:114:y:2008:i:2:p:615-630.

    Full description at Econpapers || Download paper

  27. Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches. (2007). Nikolopoulos, Konstantinos ; Patelis, A. ; Assimakopoulos, V. ; Goodwin, P..
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:180:y:2007:i:1:p:354-368.

    Full description at Econpapers || Download paper

  28. Multi-view Latent Learning Applied to Fashion Industry. (). Craparotta, Giuseppe ; Meo, Rosa ; Gardino, Giovanni Battista.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v::y::i::d:10.1007_s10796-020-10005-8.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-01-07 09:52:44 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.