Adya, M. ; Armstrong, J.S. ; Collopy, F. ; Kennedy, M. An application of rule-based forecasting to a situation lacking domain knowledge. 2000 International Journal of Forecasting. 16 477-484
Adya, M. ; Collopy, F. ; Armstrong, J.S. ; Kennedy, M. Automatic identification of time series features for rule-based forecasting. 2001 International Journal of Forecasting. 17 143-157
Aiolfi, M. ; Timmermann, A. Persistence in forecasting performance and conditional combination strategies. 2006 Journal of Econometrics. 135 31-53
- Arinze, B. ; Kim, S.-L. ; Anandarajan, M. Combining and selecting forecasting models using rule based induction. 1997 Computers & Operations Research. 24 423-433
Paper not yet in RePEc: Add citation now
- Cleveland, R.B. ; Cleveland, W.S. ; McRae, J.E. ; Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. 1990 Journal of Official Statistics. 6 3-73
Paper not yet in RePEc: Add citation now
Collopy, F. ; Armstrong, J.S. Rule-based forecasting: development and validation of an expert systems approach to combining time series extrapolations. 1992 Management Science. 38 1394-1414
- Hall, M. ; Frank, E. ; Holmes, G. ; Pfahringer, B. ; Reutemann, P. ; Witten, I.H. The WEKA data mining software: an update. 2009 ACM SIGKDD Explorations Newsletter. 11 10-18
Paper not yet in RePEc: Add citation now
Hyndman, R.J. ; Khandakar, Y. Automatic time series forecasting: the forecast package for R. 2008 Journal of Statistical Software. 26 1-22
Hyndman, R.J. ; Koehler, A.B. Another look at measures of forecast accuracy. 2006 International Journal of Forecasting. 22 679-688
Ingel, A. ; Shahroudi, N. ; Kängsepp, M. ; Tättar, A. ; Komisarenko, V. ; Kull, M. Correlated daily time series and forecasting in the M4 competition. 2020 International Journal of Forecasting. 36 121-128
- Kang, Y. ; Hyndman, R.J. ; Li, F. GRATIS: Generating time series with diverse and controllable characteristics. 2020 Statistical Analysis and Data Mining. 13 -
Paper not yet in RePEc: Add citation now
Kang, Y. ; Hyndman, R.J. ; Smith-Miles, K. Visualising forecasting algorithm performance using time series instance spaces. 2017 International Journal of Forecasting. 33 345-358
Kourentzes, N. ; Barrow, D. ; Petropoulos, F. Another look at forecast selection and combination: Evidence from forecast pooling. 2019 International Journal of Production Economics. 209 226-235
- Kück, M., Crone, S. F., & Freitag, M. (2016). Meta-learning with neural networks and landmarking for forecasting model selection. In 2016 international joint conference on neural networks (IJCNN) (pp. 1499–1506).
Paper not yet in RePEc: Add citation now
- Lemke, C. ; Gabrys, B. Meta-learning for time series forecasting and forecast combination. 2010 Neurocomputing. 73 2006-2016
Paper not yet in RePEc: Add citation now
Li, F. ; Villani, M. Efficient Bayesian multivariate surface regression. 2013 Scandinavian Journal of Statistics. 40 706-723
- Li, F. ; Villani, M. ; Kohn, R. Flexible modeling of conditional distributions using smooth mixtures of asymmetric student t densities. 2010 Journal of Statistical Planning and Inference. 140 3638-3654
Paper not yet in RePEc: Add citation now
- Li, X. ; Kang, Y. ; Li, F. Forecasting with time series imaging. 2020 Expert Systems with Applications. 160 -
Paper not yet in RePEc: Add citation now
Lichtendahl Jr, K.C. ; Grushka-Cockayne, Y. ; Winkler, R.L. Is it better to average probabilities or quantiles?. 2013 Management Science. 59 1594-1611
- Maaten, L.v.d. ; Hinton, G. Visualizing data using t-SNE. 2008 Journal of Machine Learning Research. 9 2579-2605
Paper not yet in RePEc: Add citation now
Makridakis, S. ; Spiliotis, E. ; Assimakopoulos, V. The M4 competition: Results, findings, conclusion and way forward. 2018 International Journal of Forecasting. 34 802-808
Matsypura, D. ; Thompson, R. ; Vasnev, A.L. Optimal selection of expert forecasts with integer programming. 2018 Omega. 78 165-175
- Meade, N. Evidence for the selection of forecasting methods. 2000 Journal of Forecasting. 19 515-535
Paper not yet in RePEc: Add citation now
- Mersmann, O. Microbenchmark: Accurate timing functions. 2019 :
Paper not yet in RePEc: Add citation now
Montero-Manso, P. ; Athanasopoulos, G. ; Hyndman, R.J. ; Talagala, T.S. FFORMA: Feature-based forecast model averaging. 2020 International Journal of Forecasting. 36 86-92
Petropoulos, F. ; Hyndman, R.J. ; Bergmeir, C. Exploring the sources of uncertainty: Why does bagging for time series forecasting work?. 2018 European Journal of Operational Research. 268 545-554
- Petropoulos, F. ; Makridakis, S. ; Assimakopoulos, V. ; Nikolopoulos, K. ‘Horses for courses’ in demand forecasting. 2014 European Journal of Operational Research. 237 152-163
Paper not yet in RePEc: Add citation now
Petropoulos, F. ; Svetunkov, I. A simple combination of univariate models. 2020 International Journal of Forecasting. 36 110-115
- Prudêncio, R. ; Ludermir, T. Using machine learning techniques to combine forecasting methods. 2004 En : Australasian joint conference on artificial intelligence. Springer:
Paper not yet in RePEc: Add citation now
- Prudêncio, R.B. ; Ludermir, T.B. Meta-learning approaches to selecting time series models. 2004 Neurocomputing. 61 121-137
Paper not yet in RePEc: Add citation now
- Rice, J.R. The algorithm selection problem. 1976 Advances in Computers. 15 65-118
Paper not yet in RePEc: Add citation now
Ruppert, D. ; Wand, M. ; Carroll, R. Semiparametric regression. 2003 Cambridge University Press: Cambridge
Shah, C. Model selection in univariate time series forecasting using discriminant analysis. 1997 International Journal of Forecasting. 13 489-500
- Spiliotis, E. ; Kouloumos, A. ; Assimakopoulos, V. ; Makridakis, S. Are forecasting competitions data representative of the reality?. 2019 International Journal of Forecasting. -
Paper not yet in RePEc: Add citation now
Talagala, T.S. ; Hyndman, R.J. ; Athanasopoulos, G. Meta-learning how to forecast time series. 2018 Department of Econometrics & Business Statistics, Monash University:
Tashman, L.J. Out-of-sample tests of forecasting accuracy: an analysis and review. 2000 International Journal of Forecasting. 16 437-450
- Tashman, L.J. ; Leach, M.L. Automatic forecasting software: A survey and evaluation. 2013 International Journal of Forecasting. 7 209-230
Paper not yet in RePEc: Add citation now
- Venkatachalam, A. ; Sohl, J.E. An intelligent model selection and forecasting system. 1999 Journal of Forecasting. 18 167-180
Paper not yet in RePEc: Add citation now
Villani, M. ; Kohn, R. ; Giordani, P. Regression density estimation using smooth adaptive Gaussian mixtures. 2009 Journal of Econometrics. 153 155-173
- Wang, X. ; Kang, Y. ; Petropoulos, F. ; Li, F. The uncertainty estimation of feature-based forecast combinations. 2021 Journal of the Operational Research Society. -
Paper not yet in RePEc: Add citation now
- Wang, X. ; Smith-Miles, K. ; Hyndman, R.J. Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series. 2009 Neurocomputing. 72 2581-2594
Paper not yet in RePEc: Add citation now
- Wang, X. ; Smith, K. ; Hyndman, R. Characteristic-based clustering for time series data. 2006 Data Mining and Knowledge Discovery. 13 335-364
Paper not yet in RePEc: Add citation now
- Widodo, A., & Budi, I. (2013). Model selection using dimensionality reduction of time series characteristics. In International symposium on forecasting, Seoul, South Korea.
Paper not yet in RePEc: Add citation now