Nothing Special   »   [go: up one dir, main page]

create a website
A comparison of AdaBoost algorithms for time series forecast combination. (2016). Barrow, Devon K ; Crone, Sven F.
In: International Journal of Forecasting.
RePEc:eee:intfor:v:32:y:2016:i:4:p:1103-1119.

Full description at Econpapers || Download paper

Cited: 18

Citations received by this document

Cites: 69

References cited by this document

Cocites: 24

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A new PM2.5 concentration forecasting system based on AdaBoost?ensemble system with deep learning approach. (2023). Wang, Shouyang ; Sun, Shaolong ; Gan, Kai ; Li, Zhongfei.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:42:y:2023:i:1:p:154-175.

    Full description at Econpapers || Download paper

  2. Identifying and Predicting Trends of Disruptive Technologies: An Empirical Study Based on Text Mining and Time Series Forecasting. (2023). Lv, Kun ; Fu, Dian ; Xiang, Minhao.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:6:p:5412-:d:1101019.

    Full description at Econpapers || Download paper

  3. Improved Active and Reactive Energy Forecasting Using a Stacking Ensemble Approach: Steel Industry Case Study. (2023). Sanjari, Mohammad J ; Mubarak, Hamza ; Abdellatif, Abdallah ; Stegen, Sascha.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:21:p:7252-:d:1267260.

    Full description at Econpapers || Download paper

  4. Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting. (2022). Peng, Yaohao ; Fontoura, Joo Pedro ; Melo, Pedro Henrique.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:8:p:1701-1724.

    Full description at Econpapers || Download paper

  5. A Comparative Study of Demand Forecasting Models for a Multi-Channel Retail Company: A Novel Hybrid Machine Learning Approach. (2022). Kishore, Avinash ; Kumar, Pravin ; Mitra, Arnab ; Jain, Arnav.
    In: SN Operations Research Forum.
    RePEc:spr:snopef:v:3:y:2022:i:4:d:10.1007_s43069-022-00166-4.

    Full description at Econpapers || Download paper

  6. Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model. (2022). Rahman, MM ; Abdellatef, Hamdan ; Hammoudeh, Ahmad ; Shafiullah, G M ; Ahmed, Tofael ; Ahmad, Shameem ; Mubarak, Hamza ; Abdellatif, Abdallah ; Gheni, Hassan Muwafaq.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:17:p:11083-:d:907204.

    Full description at Econpapers || Download paper

  7. Machine Learning Models and Intra-Daily Market Information for the Prediction of Italian Electricity Prices. (2022). Pelagatti, Matteo ; Grossi, Luigi ; Golia, Silvia.
    In: Forecasting.
    RePEc:gam:jforec:v:5:y:2022:i:1:p:3-101:d:1020016.

    Full description at Econpapers || Download paper

  8. Forecasting: theory and practice. (2022). Shang, Han Lin ; Rubaszek, Michał ; Martinez, Andrew ; Grossi, Luigi ; Franses, Philip Hans ; Fiszeder, Piotr ; Clements, Michael ; Castle, Jennifer ; Carnevale, Claudio ; Kolassa, Stephan ; Thorarinsdottir, Thordis ; Guo, Xiaojia ; Reade, James J ; Petropoulos, Fotios ; Nikolopoulos, Konstantinos ; Koehler, Anne B ; Thomakos, Dimitrios ; Browell, Jethro ; Rapach, David E ; Modis, Theodore ; Kang, Yanfei ; Tashman, Len ; Boylan, John E ; Gunter, Ulrich ; Ramos, Patricia ; Ellison, Joanne ; Meeran, Sheik ; Richmond, Victor ; Talagala, Thiyanga S ; Bijak, Jakub ; Guidolin, Massimo ; Pinson, Pierre ; Dokumentov, Alexander ; Jeon, Jooyoung ; Bessa, Ricardo J ; Pedregal, Diego J ; de Baets, Shari ; Ziel, Florian ; Syntetos, Aris A ; Bergmeir, Christoph
  9. Artificial bee colony-based combination approach to forecasting agricultural commodity prices. (2022). Zhou, Hao ; Li, Xiang ; Wang, Zhen.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:38:y:2022:i:1:p:21-34.

    Full description at Econpapers || Download paper

  10. Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems. (2022). Fu, Hong ; Wang, Shuo ; Cao, Chaojin ; He, Yaoyao.
    In: Applied Energy.
    RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008273.

    Full description at Econpapers || Download paper

  11. Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization. (2022). Wang, Lin ; Lv, Sheng-Xiang.
    In: Applied Energy.
    RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001404.

    Full description at Econpapers || Download paper

  12. Mathematical optimization in classification and regression trees. (2021). Carrizosa, Emilio ; Morales, Dolores Romero ; Molero-Rio, Cristina.
    In: TOP: An Official Journal of the Spanish Society of Statistics and Operations Research.
    RePEc:spr:topjnl:v:29:y:2021:i:1:d:10.1007_s11750-021-00594-1.

    Full description at Econpapers || Download paper

  13. A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting. (2021). Yu, Lean ; Ma, Yueming.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:15:p:4604-:d:604401.

    Full description at Econpapers || Download paper

  14. Systemic risk measures and distribution forecasting of macroeconomic shocks. (2021). Zhang, YU ; Liu, Yanzhen ; Chen, Guojin.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:75:y:2021:i:c:p:178-196.

    Full description at Econpapers || Download paper

  15. Short term load forecasting based on feature extraction and improved general regression neural network model. (2019). Liang, YI ; Hong, Wei-Chiang ; Niu, Dongxiao.
    In: Energy.
    RePEc:eee:energy:v:166:y:2019:i:c:p:653-663.

    Full description at Econpapers || Download paper

  16. Stein-Rule Combination Forecasting on RFID Based Supply Chain. (2018). Wang, Wenjie ; Fan, Dandan ; Xu, QI.
    In: Asia-Pacific Journal of Operational Research (APJOR).
    RePEc:wsi:apjorx:v:35:y:2018:i:02:n:s0217595918400018.

    Full description at Econpapers || Download paper

  17. Research and application of a combined model based on variable weight for short term wind speed forecasting. (2018). Li, Hongmin ; Guo, Zhenhai ; Lu, Haiyan ; Wang, Jianzhou.
    In: Renewable Energy.
    RePEc:eee:renene:v:116:y:2018:i:pa:p:669-684.

    Full description at Econpapers || Download paper

  18. Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China. (2018). Wang, Lin ; Zeng, Yu-Rong ; Lv, Sheng-Xiang.
    In: Energy.
    RePEc:eee:energy:v:155:y:2018:i:c:p:1013-1031.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Aksu, C. ; Gunter, S.I. An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts. 1992 International Journal of Forecasting. 8 27-43

  2. Assaad, M. ; Bone, R. ; Cardot, H. A new boosting algorithm for improved time-series forecasting with recurrent neural networks. 2008 Information Fusion. 9 41-55
    Paper not yet in RePEc: Add citation now
  3. Audrino, F. The impact of general non-parametric volatility functions in multivariate GARCH models. 2006 Computational Statistics and Data Analysis. 50 3032-3052

  4. Audrino, F. ; Bühlmann, P. Splines for financial volatility. 2009 Journal of the Royal Statistical Society. Series B (Statistical Methodology). 71 655-670

  5. Avnimelech, R. ; Intrator, N. Boosting regression estimators. 1999 Neural Computation. 11 499-520
    Paper not yet in RePEc: Add citation now
  6. Bühlmann, P. ; Yu, B. Boosting. 2010 Wiley Interdisciplinary Reviews: Computational Statistics. 2 69-74
    Paper not yet in RePEc: Add citation now
  7. Bates, J.M. ; Granger, C.W.J. The combination of forecasts. 1969 OR Quarterly. 20 451-468
    Paper not yet in RePEc: Add citation now
  8. Bauer, E. ; Kohavi, R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. 1999 Machine Learning. 36 105-139
    Paper not yet in RePEc: Add citation now
  9. Bone, R., Assaad, M., & Crucianu, M. (2003). Boosting recurrent neural networks for time series prediction. In D. W. Pearson, N. C. Steele & R. F. Albrecht (Eds.), Artificial neural nets and genetic algorithms. Vienna.
    Paper not yet in RePEc: Add citation now
  10. Bordley, R.F. The combination of forecasts: a Bayesian approach. 1982 Journal of the Operational Research Society. 33 171-174
    Paper not yet in RePEc: Add citation now
  11. Breiman, L. Arcing classifiers. 1998 Annals of Statistics. 26 801-824
    Paper not yet in RePEc: Add citation now
  12. Breiman, L. Bagging predictors. 1996 Machine Learning. 24 123-140
    Paper not yet in RePEc: Add citation now
  13. Breiman, L. Classification and regression trees. 1984 Wadsworth Int. Group: Michigan
    Paper not yet in RePEc: Add citation now
  14. Bunn, D.W. Bayesian approach to linear combination of forecasts. 1975 OR Quarterly. 26 325-329
    Paper not yet in RePEc: Add citation now
  15. Bunn, D.W. Combining forecasts. 1988 European Journal of Operational Research. 33 223-229

  16. Canestrelli, E., Canestrelli, P., Corazza, M., Filippone, M., Giove, S., & Masulli, F. (2007). Local learning of tide level time series using a fuzzy approach. In Proceedings of IEEE international joint conference on neural networks (pp. 1813–1818).
    Paper not yet in RePEc: Add citation now
  17. Chan, C.K. ; Kingsman, B.G. ; Wong, H. The value of combining forecasts in inventory management—a case study in banking. 1999 European Journal of Operational Research. 117 199-210

  18. Clements, M.P. ; Hendry, D.F. An overview of economic forecasting. 2007 En : Clements, M.P. ; Hendry, D.F. A companion to economic forecasting. :
    Paper not yet in RePEc: Add citation now
  19. Crone, S.F. ; Hibon, M. ; Nikolopoulos, K. Advances in forecasting with neural networks? Empirical evidence from the NN3 competition. 2011 International Journal of Forecasting. 27 635-660

  20. de Menezes, L.M. ; Bunn, D.W. ; Taylor, J.W. Review of guidelines for the use of combined forecasts. 2000 European Journal of Operational Research. 120 190-204

  21. de Souza, L.V. ; Pozo, A. ; da Rosa, J.M.C. ; Neto, A.C. Applying correlation to enhance boosting technique using genetic programming as base learner. 2010 Applied Intelligence. 33 291-301
    Paper not yet in RePEc: Add citation now
  22. Deng, Y. F., Jin, X., & Zhong, Y. X. (2005). Ensemble SVR for prediction of time series. In Proceedings of international conference on machine learning, Vol. 6 (pp. 3528–3534).
    Paper not yet in RePEc: Add citation now
  23. Diebold, F.X. ; Pauly, P. The use of prior information in forecast combination. 1990 International Journal of Forecasting. 6 503-508

  24. Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. 2000 Machine Learning. 40 139-157
    Paper not yet in RePEc: Add citation now
  25. Drucker, H. Improving regressors using boosting techniques. 1997 En : The fourteenth international conference on machine learning. Morgan Kaufmann Inc.:
    Paper not yet in RePEc: Add citation now
  26. Efron, B. Estimating the error rate of a prediction rule—improvement on cross-validation. 1983 Journal of the American Statistical Association. 78 316-331
    Paper not yet in RePEc: Add citation now
  27. Foster, J.J. ; Barkus, E. ; Yavorsky, C. Understanding and using advanced statistics: a practical guide for students. 2005 Sage:
    Paper not yet in RePEc: Add citation now
  28. Freund, Y. ; Schapire, R. ; Abe, N. A short introduction to boosting. 1999 Journal of the Japanese Society for Artificial Intelligence. 14 771-780
    Paper not yet in RePEc: Add citation now
  29. Freund, Y. ; Schapire, R.E. A decision–theoretic generalization of on-line learning and an application to boosting. 1997 Journal of Computer and System Sciences. 55 119-139
    Paper not yet in RePEc: Add citation now
  30. Friedman, J. ; Hastie, T. ; Tibshirani, R. Additive logistic regression: a statistical view of boosting. 2000 Annals of Statistics. 28 337-407
    Paper not yet in RePEc: Add citation now
  31. Friedman, J.H. Greedy function approximation: A gradient boosting machine. 2001 Annals of Statistics. 29 1189-1232
    Paper not yet in RePEc: Add citation now
  32. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. 1940 The Annals of Mathematical Statistics. 11 86-92
    Paper not yet in RePEc: Add citation now
  33. Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. 1937 Journal of the American Statistical Association. 32 675-701
    Paper not yet in RePEc: Add citation now
  34. Goh, W.Y. ; Lim, C.P. ; Peh, K.K. Predicting drug dissolution profiles with an ensemble of boosted neural networks. 2003 IEEE Transactions on Neural Networks. 14 459-463
    Paper not yet in RePEc: Add citation now
  35. Granger, C.W.J. ; Ramanathan, R. Improved methods of combining forecasts. 1984 Journal of Forecasting. 3 197-204
    Paper not yet in RePEc: Add citation now
  36. Gunter, S.I. Nonnegativity restricted least squares combinations. 1992 International Journal of Forecasting. 8 45-59

  37. Hagan, M.T. ; Demuth, H.B. ; Beale, M.H. Neural network design. 1996 PWS Publishing:
    Paper not yet in RePEc: Add citation now
  38. Hansen, L.K. ; Salamon, P. Neural network ensembles. 1990 IEEE Transactions on Pattern Analysis and Machine Intelligence. 12 993-1001
    Paper not yet in RePEc: Add citation now
  39. Hillebrand, E. ; Medeiros, M.C. The benefits of bagging for forecast models of realized volatility. 2010 Econometric Reviews. 29 571-593

  40. Hornik, K. Approximation capabilities of multilayer feedforward networks. 1991 Neural Networks. 4 251-257
    Paper not yet in RePEc: Add citation now
  41. Hyndman, R.J. ; Koehler, A.B. Another look at measures of forecast accuracy. 2006 International Journal of Forecasting. 22 679-688

  42. Jose, V.R.R. ; Winkler, R.L. Simple robust averages of forecasts: Some empirical results. 2008 International Journal of Forecasting. 24 163-169

  43. Kourentzes, N. ; Barrow, D.K. ; Crone, S.F. Neural network ensemble operators for time series forecasting. 2014 Expert Systems with Applications. 41 4235-4244
    Paper not yet in RePEc: Add citation now
  44. Kunsch, H.R. The jackknife and the bootstrap for general stationary observations. 1989 Annals of Statistics. 17 1217-1241
    Paper not yet in RePEc: Add citation now
  45. Lee, T.H. ; Yang, Y. Bagging binary and quantile predictors for time series. 2006 Journal of Econometrics. 135 465-497

  46. Leung, M.T. ; Daouk, H. ; Chen, A.-S. Using investment portfolio return to combine forecasts: A multiobjective approach. 2001 European Journal of Operational Research. 134 84-102

  47. Lin, J. ; Zhu, B.Z. A novel neural network ensemble system for economic forecasting. 2007 En : Advanced intelligent computing theories, Vol. 2. :
    Paper not yet in RePEc: Add citation now
  48. Macdonald, R. ; Marsh, I.W. Combining exchange-rates forecasts—what is the optimal consensus measure. 1994 Journal of Forecasting. 13 313-332
    Paper not yet in RePEc: Add citation now
  49. Makridakis, S. ; Hibon, M. The M3-Competition: results, conclusions and implications. 2000 International Journal of Forecasting. 16 451-476

  50. Min, C.K. ; Zellner, A. Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth-rates. 1993 Journal of Econometrics. 56 89-118

  51. Nemenyi, P. Distribution-free multiple comparisons. 1963 Princeton University:
    Paper not yet in RePEc: Add citation now
  52. Newbold, P. ; Granger, C.W.J. Experience with forecasting univariate time series and combination of forecasts. 1974 Journal of the Royal Statistical Society, Series A. 137 131-165
    Paper not yet in RePEc: Add citation now
  53. Riedel, S. ; Gabrys, B. Pooling for combination of multilevel forecasts. 2009 IEEE Transactions on Knowledge and Data Engineering. 21 1753-1766
    Paper not yet in RePEc: Add citation now
  54. Robinzonov, N. ; Tutz, G. ; Hothorn, T. Boosting techniques for nonlinear time series models. 2012 AStA Advances in Statistical Analysis. 96 99-122

  55. Rokach, L. Taxonomy for characterizing ensemble methods in classification tasks: A review. 2009 Computational Statistics and Data Analysis. 53 4046-4072

  56. Schapire, R. E. (2003). The boosting approach to machine learning. In Proceedings of MSRI workshop on nonlinear estimation and classification (pp. 49–171).
    Paper not yet in RePEc: Add citation now
  57. Schapire, R.E. ; Freund, Y. ; Bartlett, P. Boosting the margin: A new explanation for the effectiveness of voting methods. 1998 Annals of Statistics. 26 1651-1686
    Paper not yet in RePEc: Add citation now
  58. Schapire, R.E. ; Singer, Y. Improved boosting algorithms using confidence-rated predictions. 1999 Machine Learning. 37 297-336
    Paper not yet in RePEc: Add citation now
  59. Shrestha, D.L. ; Solomatine, D.P. Experiments with AdaBoost.RT, an improved boosting scheme for regression. 2006 Neural Computation. 18 1678-1710
    Paper not yet in RePEc: Add citation now
  60. Skurichina, M. ; Kuncheva, L.I. ; Duin, R.P.W. Bagging and boosting for the nearest mean classifier: effects of sample size on diversity and accuracy. 2002 En : Roli, F. ; Kittler, J. Multiple classifier systems. Springer-Verlag Berlin: Berlin
    Paper not yet in RePEc: Add citation now
  61. Stock, J.H. ; Watson, M.W. An empirical comparison of methods for forecasting using many predictors. 2005 Princeton University:
    Paper not yet in RePEc: Add citation now
  62. Stock, J.H. ; Watson, M.W. Combination forecasts of output growth in a seven-country data set. 2004 Journal of Forecasting. 23 405-430

  63. Taieb, S.B. ; Hyndman, R.J. A gradient boosting approach to the Kaggle load forecasting competition. 2014 International Journal of Forecasting. 30 382-394

  64. Tashman, J. Out-of-sample tests of forecasting accuracy: an analysis and review. 2000 International Journal of Forecasting. 16 437-450

  65. Weigend, A. S., & Gershenfeld, N. A. (1993). Results of the time series prediction competition at the Santa Fe Institute. In IEEE international conference on neural networks, Vol. 3 (pp. 1786–1793).
    Paper not yet in RePEc: Add citation now
  66. Winkler, R.L. ; Clemen, R.T. Sensitivity of weights in combining forecasts. 1992 Operations Research. 40 609-614

  67. Wohlrabe, K. ; Buchen, T. Assessing the macroeconomic forecasting performance of boosting: evidence for the United States, the Euro area and Germany. 2014 Journal of Forecasting. 33 231-242

  68. Zhang, F. An application of vector GARCH model in semiconductor demand planning. 2007 European Journal of Operational Research. 181 288-297

  69. Zhang, G.Q. ; Patuwo, B.E. ; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. 1998 International Journal of Forecasting. 14 35-62

Cocites

Documents in RePEc which have cited the same bibliography

  1. Forecast combinations: An over 50-year review. (2023). Li, Feng ; Kang, Yanfei ; Hyndman, Rob J ; Wang, Xiao Qian.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:39:y:2023:i:4:p:1518-1547.

    Full description at Econpapers || Download paper

  2. Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting. (2022). Peng, Yaohao ; Fontoura, Joo Pedro ; Melo, Pedro Henrique.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:41:y:2022:i:8:p:1701-1724.

    Full description at Econpapers || Download paper

  3. Optimal forecasting accuracy using Lp-norm combination. (2022). Giacalone, Massimiliano.
    In: METRON.
    RePEc:spr:metron:v:80:y:2022:i:2:d:10.1007_s40300-021-00218-5.

    Full description at Econpapers || Download paper

  4. Predictive ability and economic gains from volatility forecast combinations. (2020). Skintzi, Vasiliki ; Fameliti, Stavroula P.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:39:y:2020:i:2:p:200-219.

    Full description at Econpapers || Download paper

  5. Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination. (2020). Setzer, Thomas ; Blanc, Sebastian M.
    In: Management Science.
    RePEc:inm:ormnsc:v:66:y:12:i:2020:p:5720-5737.

    Full description at Econpapers || Download paper

  6. Forecasting Tax Revenue and its Volatility in Tanzania. (2017). Chimilila, Cyril.
    In: African Journal of Economic Review.
    RePEc:ags:afjecr:264561.

    Full description at Econpapers || Download paper

  7. Distributions of forecasting errors of forecast combinations: Implications for inventory management. (2016). Barrow, Devon K ; Kourentzes, Nikolaos.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:177:y:2016:i:c:p:24-33.

    Full description at Econpapers || Download paper

  8. Cross-validation aggregation for combining autoregressive neural network forecasts. (2016). Barrow, Devon K ; Crone, Sven F.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:4:p:1120-1137.

    Full description at Econpapers || Download paper

  9. A comparison of AdaBoost algorithms for time series forecast combination. (2016). Barrow, Devon K ; Crone, Sven F.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:4:p:1103-1119.

    Full description at Econpapers || Download paper

  10. On the predictability of model-free implied correlation. (2016). Skintzi, Vasiliki ; Refenes, Apostolos ; Markopoulou, Chryssa .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:2:p:527-547.

    Full description at Econpapers || Download paper

  11. Realized hedge ratio: Predictability and hedging performance. (2016). Skintzi, Vasiliki ; Refenes, Apostolos-Paul N ; Markopoulou, Chrysi E.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:45:y:2016:i:c:p:121-133.

    Full description at Econpapers || Download paper

  12. Improving short term load forecast accuracy via combining sister forecasts. (2016). Weron, Rafał ; Nowotarski, Jakub ; Hong, Tao ; Liu, Bidong .
    In: Energy.
    RePEc:eee:energy:v:98:y:2016:i:c:p:40-49.

    Full description at Econpapers || Download paper

  13. Improving short term load forecast accuracy via combining sister forecasts. (2015). Weron, Rafał ; Nowotarski, Jakub ; Hong, Tao ; Liu, Bidong .
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1505.

    Full description at Econpapers || Download paper

  14. Electricity price forecasting: A review of the state-of-the-art with a look into the future. (2014). Weron, Rafał.
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1407.

    Full description at Econpapers || Download paper

  15. Electricity price forecasting: A review of the state-of-the-art with a look into the future. (2014). Weron, Rafał.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:30:y:2014:i:4:p:1030-1081.

    Full description at Econpapers || Download paper

  16. An empirical comparison of alternative schemes for combining electricity spot price forecasts. (2014). Weron, Rafał ; Trueck, Stefan ; Nowotarski, Jakub ; Raviv, Eran ; Truck, Stefan.
    In: Energy Economics.
    RePEc:eee:eneeco:v:46:y:2014:i:c:p:395-412.

    Full description at Econpapers || Download paper

  17. Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli). (2013). Nowotarski, Jakub.
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1317.

    Full description at Econpapers || Download paper

  18. An empirical comparison of alternate schemes for combining electricity spot price forecasts. (2013). Weron, Rafał ; Trueck, Stefan ; Nowotarski, Jakub ; Raviv, Eran .
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1307.

    Full description at Econpapers || Download paper

  19. 25 years of time series forecasting. (2006). Hyndman, Rob ; Gooijer, Jan G..
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:22:y:2006:i:3:p:443-473.

    Full description at Econpapers || Download paper

  20. 25 Years of IIF Time Series Forecasting: A Selective Review. (2005). Hyndman, Rob ; De Gooijer, Jan G..
    In: Tinbergen Institute Discussion Papers.
    RePEc:tin:wpaper:20050068.

    Full description at Econpapers || Download paper

  21. Modelling the data measurement process for the index of production. (2002). Patterson, K. D..
    In: Journal of the Royal Statistical Society Series A.
    RePEc:bla:jorssa:v:165:y:2002:i:2:p:279-296.

    Full description at Econpapers || Download paper

  22. Review of guidelines for the use of combined forecasts. (2000). Bunn, Derek W. ; de Menezes, Lilian M. ; Taylor, James W..
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:120:y:2000:i:1:p:190-204.

    Full description at Econpapers || Download paper

  23. Investigating improvements in the accuracy of prediction intervals for combinations of forecasts: A simulation study. (1999). Bunn, Derek W. ; Taylor, James W..
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:15:y:1999:i:3:p:325-339.

    Full description at Econpapers || Download paper

  24. A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems. (1998). Fiordaliso, Antonio.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:14:y:1998:i:3:p:367-379.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-27 19:51:58 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.