Nothing Special   »   [go: up one dir, main page]

create a website
Forecasting the total market value of a shares traded in the Shenzhen stock exchange via the neural network. (2022). Zhang, Yun ; Xu, Xiaojie.
In: Economics Bulletin.
RePEc:ebl:ecbull:eb-21-01165.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 115

References cited by this document

Cocites: 37

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Al Bataineh, A., Kaur, D., 2018. A comparative study of diferent curve itting algorithms in artiicial neural network using housing dataset, in: NAECON 2018-IEEE National Aerospace and Electronics Conference, IEEE. pp. 174–178. doi:✶✵✳✶✶✵✾✴◆❆❊❈❖◆✳✷✵✶✽✳✽✺✺✻✼✸✽.
    Paper not yet in RePEc: Add citation now
  2. Altan, A., Karasu, S., Zio, E., 2021. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing 100, 106996. doi:✶✵✳✶✵✶✻✴❥✳❛s♦❝✳✷✵✷✵✳✶✵✻✾✾✻.
    Paper not yet in RePEc: Add citation now
  3. Alvim, L., dos Santos, C.N., Milidiu, R.L., 2010. Daily volume forecasting using high frequency predictors, in: Proceedings of the 10th IASTED International Conference, p. 248.
    Paper not yet in RePEc: Add citation now
  4. Arouri, M.E.H., Jawadi, F., Nguyen, D.K., 2012. Nonlinearities in carbon spot-futures price relationships during phase ii of the eu ets. Economic Modelling 29, 884–892. doi:✶✵✳✶✵✶✻✴ ❥✳❡❝♦♥♠♦❞✳✷✵✶✶✳✶✶✳✵✵✸.

  5. Awokuse, T.O., Yang, J., 2003. The informational role of commodity prices in formulating monetary policy: a reexamination. Economics Letters 79, 219–224. doi:✶✵✳✶✵✶✻✴ ❙✵✶✻✺✲✶✼✻✺✭✵✷✮✵✵✸✸✶✲✷.

  6. Babula, R.A., Bessler, D.A., Reeder, J., Somwaru, A., 2004. Modeling us soy-based markets with directed acyclic graphs and bernanke structural var methods: The impacts of high soy meal and soybean prices. Journal of Food Distribution Research 35, 29–52. doi:✶✵✳✷✷✵✵✹✴ ❛❣✳❡❝♦♥✳✷✼✺✺✾.

  7. Bessler, D.A., 1982. Adaptive expectations, the exponentially weighted forecast, and optimal statistical predictors: A revisit. Agricultural Economics Research 34, 16–23. doi:✶✵✳✷✷✵✵✹✴ ❛❣✳❡❝♦♥✳✶✹✽✽✶✾.

  8. Bessler, D.A., 1990. Forecasting multiple time series with little prior information. American Journal of Agricultural Economics 72, 788–792. doi:✶✵✳✷✸✵✼✴✶✷✹✸✵✺✾.

  9. Bessler, D.A., Babula, R.A., 1987. Forecasting wheat exports: do exchange rates matter? Journal of Business & Economic Statistics 5, 397–406. doi:✶✵✳✷✸✵✼✴✶✸✾✶✻✶✺.

  10. Bessler, D.A., Brandt, J.A., 1981. Forecasting livestock prices with individual and composite methods. Applied Economics 13, 513–522. doi:✶✵✳✶✵✽✵✴✵✵✵✸✻✽✹✽✶✵✵✵✵✵✵✶✻.
    Paper not yet in RePEc: Add citation now
  11. Bessler, D.A., Brandt, J.A., 1992. An analysis of forecasts of livestock prices. Journal of Economic Behavior & Organization 18, 249–263. doi:✶✵✳✶✵✶✻✴✵✶✻✼✲✷✻✽✶✭✾✷✮✾✵✵✸✵✲❋.

  12. Bessler, D.A., Chamberlain, P.J., 1988. Composite forecasting with dirichlet priors. Decision Sciences 19, 771–781. doi:✶✵✳✶✶✶✶✴❥✳✶✺✹✵✲✺✾✶✺✳✶✾✽✽✳t❜✵✵✸✵✷✳①.
    Paper not yet in RePEc: Add citation now
  13. Bessler, D.A., Hopkins, J.C., 1986. Forecasting an agricultural system with random walk priors. Agricultural Systems 21, 59–67. doi:✶✵✳✶✵✶✻✴✵✸✵✽✲✺✷✶❳✭✽✻✮✾✵✵✷✾✲✻.

  14. Bessler, D.A., Kling, J.L., 1986. Forecasting vector autoregressions with bayesian priors. American Journal of Agricultural Economics 68, 144–151. doi:✶✵✳✷✸✵✼✴✶✷✹✶✻✺✾.

  15. Bessler, D.A., Wang, Z., 2012. D-separation, forecasting, and economic science: a conjecture. Theory and decision 73, 295–314. doi:✶✵✳✶✵✵✼✴s✶✶✷✸✽✲✵✶✷✲✾✸✵✺✲✽.
    Paper not yet in RePEc: Add citation now
  16. Bessler, D.A., Yang, J., Wongcharupan, M., 2003. Price dynamics in the international wheat market: modeling with error correction and directed acyclic graphs. Journal of Regional Science 43, 1–33.

  17. Blake, A., Kapetanios, G., 1999. Forecast combination and leading indicators: combining artiicial neural network and autoregressive forecasts. Manuscript, National Institute of Economic and Social Research .
    Paper not yet in RePEc: Add citation now
  18. Bordino, I., Kourtellis, N., Laptev, N., Billawala, Y., 2014. Stock trade volume prediction with yahoo inance user browsing behavior, in: 2014 IEEE 30th International Conference on Data Engineering, IEEE. pp. 1168–1173. doi:✶✵✳✶✶✵✾✴■❈❉❊✳✷✵✶✹✳✻✽✶✻✼✸✸.
    Paper not yet in RePEc: Add citation now
  19. Brandt, J.A., Bessler, D.A., 1981. Composite forecasting: An application with us hog prices. American Journal of Agricultural Economics 63, 135–140. doi:✶✵✳✷✸✵✼✴✶✷✸✾✽✶✾.

  20. Brandt, J.A., Bessler, D.A., 1982. Forecasting with a dynamic regression model: A heuristic approach. North Central Journal of Agricultural Economics , 27–33doi:✶✵✳✷✸✵✼✴✶✸✹✾✵✾✻.
    Paper not yet in RePEc: Add citation now
  21. Brandt, J.A., Bessler, D.A., 1983. Price forecasting and evaluation: An application in agriculture. Journal of Forecasting 2, 237–248. doi:✶✵✳✶✵✵✷✴❢♦r✳✸✾✽✵✵✷✵✸✵✻.
    Paper not yet in RePEc: Add citation now
  22. Brandt, J.A., Bessler, D.A., 1984. Forecasting with vector autoregressions versus a univariate arima process: An empirical example with us hog prices. North Central Journal of Agricultural Economics , 29–36doi:✶✵✳✷✸✵✼✴✶✸✹✾✷✹✽.
    Paper not yet in RePEc: Add citation now
  23. Brownlees, C.T., Cipollini, F., Gallo, G.M., 2011. Intra-daily volume modeling and prediction for algorithmic trading. Journal of Financial Econometrics 9, 489–518. doi:✶✵✳✶✵✾✸✴ ❥❥❢✐♥❡❝✴♥❜q✵✷✹.

  24. Chen, D.T., Bessler, D.A., 1987. Forecasting the us cotton industry: Structural and time series approaches, in: Proceedings of the NCR-134 Conference on Applied Commodity Price Analysis. Forecasting, and Market Risk Management, Chicago Mercantile Exchange, Chicago. doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✷✽✺✹✻✸.
    Paper not yet in RePEc: Add citation now
  25. Chen, D.T., Bessler, D.A., 1990. Forecasting monthly cotton price: structural and time series approaches. International Journal of Forecasting 6, 103–113. doi:✶✵✳✶✵✶✻✴✵✶✻✾✲✷✵✼✵✭✾✵✮ ✾✵✶✵✶✲●.

  26. Chen, R., Feng, Y., Palomar, D., 2016. Forecasting intraday trading volume: a kalman ilter approach. Available at SSRN 3101695 .
    Paper not yet in RePEc: Add citation now
  27. Chen, S., Chen, R., Ardell, G., Lin, B., 2011. End-of-day stock trading volume prediction with a two-component hierarchical model. The Journal of Trading 6, 61–68. doi:✶✵✳✸✾✵✺✴❥♦t✳ ✷✵✶✶✳✻✳✸✳✵✻✶.
    Paper not yet in RePEc: Add citation now
  28. Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. Journal of Business & Economic Statistics 13, 253–263. doi:✶✵✳✷✸✵✼✴✶✸✾✷✶✽✺.

  29. Doan, C.D., Liong, S.y., 2004. Generalization for multilayer neural network bayesian regularization or early stopping, in: Proceedings of Asia Paciic Association of Hydrology and Water Resources 2nd Conference, pp. 5–8.
    Paper not yet in RePEc: Add citation now
  30. Gharehchopogh, F.S., Bonab, T.H., Khaze, S.R., 2013. A linear regression approach to prediction of stock market trading volume: a case study. International Journal of Managing Value and Supply Chains 4, 25. doi:✶✵✳✺✶✷✶✴✐❥♠✈s❝✳✷✵✶✸✳✹✸✵✸.
    Paper not yet in RePEc: Add citation now
  31. Hagan, M.T., Menhaj, M.B., 1994. Training feedforward networks with the marquardt algorithm. IEEE transactions on Neural Networks 5, 989–993. doi:✶✵✳✶✶✵✾✴✼✷✳✸✷✾✻✾✼.
    Paper not yet in RePEc: Add citation now
  32. Harvey, D., Leybourne, S., Newbold, P., 1997. Testing the equality of prediction mean squared errors. International Journal of Forecasting 13, 281–291. doi:✶✵✳✶✵✶✻✴❙✵✶✻✾✲✷✵✼✵✭✾✻✮ ✵✵✼✶✾✲✹.

  33. Huang, W., Lai, P.C., Bessler, D.A., 2018. On the changing structure among chinese equity markets: Hong kong, shanghai, and shenzhen. European Journal of Operational Research 264, 1020–1032. doi:✶✵✳✶✵✶✻✴❥✳❡❥♦r✳✷✵✶✼✳✵✶✳✵✶✾.

  34. Joseph, K., Wintoki, M.B., Zhang, Z., 2011. Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting 27, 1116–1127. doi:✶✵✳✶✵✶✻✴❥✳✐❥❢♦r❡❝❛st✳✷✵✶✵✳✶✶✳✵✵✶.

  35. Kaastra, I., Boyd, M.S., 1995. Forecasting futures trading volume using neural networks. The Journal of Futures Markets 15, 953. doi:✶✵✳✶✵✵✷✴❢✉t✳✸✾✾✵✶✺✵✽✵✻.

  36. Kano, Y., Shimizu, S., et al., 2003. Causal inference using nonnormality, in: Proceedings of the international symposium on science of modeling, the 30th anniversary of the information criterion, pp. 261–270.
    Paper not yet in RePEc: Add citation now
  37. Karasu, S., Altan, A., Bekiros, S., Ahmad, W., 2020. A new forecasting model with wrapperbased feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212, 118750. doi:✶✵✳✶✵✶✻✴❥✳❡♥❡r❣②✳✷✵✷✵✳✶✶✽✼✺✵.

  38. Karasu, S., Altan, A., Saraç, Z., Hacioğlu, R., 2017a. Estimation of fast varied wind speed based on narx neural network by using curve itting. International Journal of Energy Applications and Technologies 4, 137–146.
    Paper not yet in RePEc: Add citation now
  39. Karasu, S., Altan, A., Saraç, Z., Hacioğlu, R., 2017b. Prediction of wind speed with non-linear autoregressive (nar) neural networks, in: 2017 25th Signal Processing and Communications Applications Conference (SIU), IEEE. pp. 1–4. doi:✶✵✳✶✶✵✾✴❙■❯✳✷✵✶✼✳✼✾✻✵✺✵✼.
    Paper not yet in RePEc: Add citation now
  40. Kayri, M., 2016. Predictive abilities of bayesian regularization and levenberg–marquardt algorithms in artiicial neural networks: a comparative empirical study on social data. Mathematical and Computational Applications 21, 20. doi:✶✵✳✸✸✾✵✴♠❝❛✷✶✵✷✵✵✷✵.
    Paper not yet in RePEc: Add citation now
  41. Khan, T.A., Alam, M., Shahid, Z., Mazliham, M., 2019. Comparative performance analysis of levenberg-marquardt, bayesian regularization and scaled conjugate gradient for the prediction of lash loods. Journal of Information Communication Technologies and Robotic Applications , 52–58.
    Paper not yet in RePEc: Add citation now
  42. Kling, J.L., Bessler, D.A., 1985. A comparison of multivariate forecasting procedures for economic time series. International Journal of Forecasting 1, 5–24. doi:✶✵✳✶✵✶✻✴ ❙✵✶✻✾✲✷✵✼✵✭✽✺✮✽✵✵✻✼✲✹.

  43. Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2, 164–168. doi:✶✵✳✶✵✾✵✴q❛♠✴✶✵✻✻✻.
    Paper not yet in RePEc: Add citation now
  44. Long, W., Lu, Z., Cui, L., 2019. Deep learning-based feature engineering for stock price movement prediction. Knowledge-Based Systems 164, 163–173. doi:✶✵✳✶✵✶✻✴❥✳❦♥♦s②s✳✷✵✶✽✳ ✶✵✳✵✸✹.
    Paper not yet in RePEc: Add citation now
  45. Lu, T., Li, Z., 2017. Forecasting csi 300 index using a hybrid functional link artiicial neural network and particle swarm optimization with improved wavelet mutation, in: 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA), IEEE. pp. 241–246. doi:✶✵✳✶✶✵✾✴■❈❈◆❊❆✳✷✵✶✼✳✺✺.
    Paper not yet in RePEc: Add citation now
  46. Ma, S., Li, P., 2021. Predicting daily trading volume via various hidden states. arXiv preprint arXiv:2107.07678 .

  47. Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431–441. doi:✶✵✳✶✶✸✼✴ ✵✶✶✶✵✸✵.
    Paper not yet in RePEc: Add citation now
  48. McIntosh, C.S., Bessler, D.A., 1988. Forecasting agricultural prices using a bayesian composite approach. Journal of Agricultural and Applied Economics 20, 73–80. doi:✶✵✳✶✵✶✼✴ ❙✵✵✽✶✸✵✺✷✵✵✵✶✼✻✶✶.

  49. Møller, M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525–533. doi:✶✵✳✶✵✶✻✴❙✵✽✾✸✲✻✵✽✵✭✵✺✮✽✵✵✺✻✲✺.
    Paper not yet in RePEc: Add citation now
  50. Nasir, M.A., Huynh, T.L.D., Nguyen, S.P., Duong, D., 2019. Forecasting cryptocurrency returns and volume using search engines. Financial Innovation 5, 1–13. doi:✶✵✳✶✶✽✻✴ s✹✵✽✺✹✲✵✶✽✲✵✶✶✾✲✽.

  51. Ning, S., 2020. Short-term prediction of the csi 300 based on the bp neural network model, in: Journal of Physics: Conference Series, IOP Publishing. p. 012054. doi:✶✵✳✶✵✽✽✴ ✶✼✹✷✲✻✺✾✻✴✶✹✸✼✴✶✴✵✶✷✵✺✹.
    Paper not yet in RePEc: Add citation now
  52. Oliveira, N., Cortez, P., Areal, N., 2017. The impact of microblogging data for stock market prediction: Using twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Systems with applications 73, 125–144. doi:✶✵✳✶✵✶✻✴❥✳❡s✇❛✳✷✵✶✻✳✶✷✳ ✵✸✻.
    Paper not yet in RePEc: Add citation now
  53. Paluszek, M., Thomas, S., 2020. Practical MATLAB Deep Learning: A Project-Based Approach. Apress.
    Paper not yet in RePEc: Add citation now
  54. Satish, V., Saxena, A., Palmer, M., 2014. Predicting intraday trading volume and volume percentages. The Journal of Trading 9, 15–25. doi:✶✵✳✸✾✵✺✴❥♦t✳✷✵✶✹✳✾✳✸✳✵✶✺.
    Paper not yet in RePEc: Add citation now
  55. Schwarz, G., et al., 1978. Estimating the dimension of a model. Annals of Statistics 6, 461–464. doi:✶✵✳✶✷✶✹✴❛♦s✴✶✶✼✻✸✹✹✶✸✻.
    Paper not yet in RePEc: Add citation now
  56. Selvamuthu, D., Kumar, V., Mishra, A., 2019. Indian stock market prediction using artiicial neural networks on tick data. Financial Innovation 5, 16. doi:✶✵✳✶✶✽✻✴ s✹✵✽✺✹✲✵✶✾✲✵✶✸✶✲✼.

  57. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A., Jordan, M., 2006. A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research 7.
    Paper not yet in RePEc: Add citation now
  58. Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K., 2011. Directlingam: A direct method for learning a linear non-gaussian structural equation model. The Journal of Machine Learning Research 12, 1225–1248.
    Paper not yet in RePEc: Add citation now
  59. Shimizu, S., Kano, Y., 2008. Use of non-normality in structural equation modeling: Application to direction of causation. Journal of Statistical Planning and Inference 138, 3483–3491. doi:✶✵✳✶✵✶✻✴❥✳❥s♣✐✳✷✵✵✻✳✵✶✳✵✶✼.
    Paper not yet in RePEc: Add citation now
  60. Stock, J.H., Watson, M.W., 1998. A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series. Technical Report. National Bureau of Economic Research.

  61. Sun, B., Guo, H., Karimi, H.R., Ge, Y., Xiong, S., 2015. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series. Neurocomputing 151, 1528–1536. doi:✶✵✳✶✵✶✻✴❥✳♥❡✉❝♦♠✳✷✵✶✹✳✵✾✳✵✶✽.
    Paper not yet in RePEc: Add citation now
  62. Wang, C., Chen, R., 2013. Forecasting csi 300 volatility: The role of persistence, asymmetry, and distributional assumption in garch models, in: 2013 Sixth International Conference on Business Intelligence and Financial Engineering, IEEE. pp. 355–358. doi:✶✵✳✶✶✵✾✴❇■❋❊✳ ✷✵✶✸✳✼✹.
    Paper not yet in RePEc: Add citation now
  63. Wang, J., Hou, R., Wang, C., Shen, L., 2016. Improved v-support vector regression model based on variable selection and brain storm optimization for stock price forecasting. Applied Soft Computing 49, 164–178. doi:✶✵✳✶✵✶✻✴❥✳❛s♦❝✳✷✵✶✻✳✵✼✳✵✷✹.
    Paper not yet in RePEc: Add citation now
  64. Wang, T., Yang, J., 2010. Nonlinearity and intraday eiciency tests on energy futures markets. Energy Economics 32, 496–503. doi:✶✵✳✶✵✶✻✴❥✳❡♥❡❝♦✳✷✵✵✾✳✵✽✳✵✵✶.
    Paper not yet in RePEc: Add citation now
  65. Wang, Z., Bessler, D.A., 2004. Forecasting performance of multivariate time series models with full and reduced rank: An empirical examination. International Journal of Forecasting 20, 683–695. doi:✶✵✳✶✵✶✻✴❥✳✐❥❢♦r❡❝❛st✳✷✵✵✹✳✵✶✳✵✵✷.

  66. Wegener, C., von Spreckelsen, C., Basse, T., von Mettenheim, H.J., 2016. Forecasting government bond yields with neural networks considering cointegration. Journal of Forecasting 35, 86–92. doi:✶✵✳✶✵✵✷✴❢♦r✳✷✸✽✺.

  67. Xu, X., 2014a. Causality and price discovery in us corn markets: An application of error correction modeling and directed acyclic graphs doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✶✻✾✽✵✻.
    Paper not yet in RePEc: Add citation now
  68. Xu, X., 2014b. Price discovery in us corn cash and futures markets: The role of cash market selection doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✶✻✾✽✵✾.
    Paper not yet in RePEc: Add citation now
  69. Xu, X., 2015a. Causality, price discovery, and price forecasts: Evidence from us corn cash and futures markets .
    Paper not yet in RePEc: Add citation now
  70. Xu, X., 2015b. Cointegration among regional corn cash prices. Economics Bulletin 35, 2581–2594. URL: ❤tt♣✿✴✴✇✇✇✳❛❝❝❡ss❡❝♦♥✳❝♦♠✴P✉❜s✴❊❇✴✷✵✶✺✴❱♦❧✉♠❡✸✺✴ ❊❇✲✶✺✲❱✸✺✲■✹✲P✷✺✾✳♣❞❢.

  71. Xu, X., 2017a. Contemporaneous causal orderings of us corn cash prices through directed acyclic graphs. Empirical Economics 52, 731–758. doi:✶✵✳✶✵✵✼✴s✵✵✶✽✶✲✵✶✻✲✶✵✾✹✲✹.

  72. Xu, X., 2017b. The rolling causal structure between the chinese stock index and futures. Financial Markets and Portfolio Management 31, 491–509. doi:✶✵✳✶✵✵✼✴s✶✶✹✵✽✲✵✶✼✲✵✷✾✾✲✼.

  73. Xu, X., 2017c. Short-run price forecast performance of individual and composite models for 496 corn cash markets. Journal of Applied Statistics 44, 2593–2620. doi:✶✵✳✶✵✽✵✴✵✷✻✻✹✼✻✸✳ ✷✵✶✻✳✶✷✺✾✸✾✾.

  74. Xu, X., 2018a. Causal structure among us corn futures and regional cash prices in the time and frequency domain. Journal of Applied Statistics 45, 2455–2480. doi:✶✵✳✶✵✽✵✴✵✷✻✻✹✼✻✸✳ ✷✵✶✼✳✶✹✷✸✵✹✹.

  75. Xu, X., 2018b. Cointegration and price discovery in us corn cash and futures markets. Empirical Economics 55, 1889–1923. doi:✶✵✳✶✵✵✼✴s✵✵✶✽✶✲✵✶✼✲✶✸✷✷✲✻.

  76. Xu, X., 2018c. Intraday price information lows between the csi300 and futures market: an application of wavelet analysis. Empirical Economics 54, 1267–1295. doi:✶✵✳✶✵✵✼✴ s✵✵✶✽✶✲✵✶✼✲✶✷✹✺✲✷.

  77. Xu, X., 2018d. Linear and nonlinear causality between corn cash and futures prices. Journal of Agricultural & Food Industrial Organization 16, 20160006. doi:✶✵✳✶✺✶✺✴ ❥❛❢✐♦✲✷✵✶✻✲✵✵✵✻.
    Paper not yet in RePEc: Add citation now
  78. Xu, X., 2018e. Using local information to improve short-run corn price forecasts. Journal of Agricultural & Food Industrial Organization 16. doi:✶✵✳✶✺✶✺✴❥❛❢✐♦✲✷✵✶✼✲✵✵✶✽.
    Paper not yet in RePEc: Add citation now
  79. Xu, X., 2019a. Contemporaneous and granger causality among us corn cash and futures prices. European Review of Agricultural Economics 46, 663–695. doi:✶✵✳✶✵✾✸✴❡r❛❡✴❥❜②✵✸✻.
    Paper not yet in RePEc: Add citation now
  80. Xu, X., 2019b. Contemporaneous causal orderings of csi300 and futures prices through directed acyclic graphs. Economics Bulletin 39, 2052–2077. URL: ❤tt♣✿✴✴✇✇✇✳❛❝❝❡ss❡❝♦♥✳❝♦♠✴ P✉❜s✴❊❇✴✷✵✶✾✴❱♦❧✉♠❡✸✾✴❊❇✲✶✾✲❱✸✾✲■✸✲P✶✾✷✳♣❞❢.

  81. Xu, X., 2019c. Price dynamics in corn cash and futures markets: cointegration, causality, and forecasting through a rolling window approach. Financial Markets and Portfolio Management 33, 155–181. doi:✶✵✳✶✵✵✼✴s✶✶✹✵✽✲✵✶✾✲✵✵✸✸✵✲✼.

  82. Xu, X., 2020. Corn cash price forecasting. American Journal of Agricultural Economics 102, 1297–1320. doi:✶✵✳✶✵✵✷✴❛❥❛❡✳✶✷✵✹✶.

  83. Xu, X., Thurman, W., 2015a. Forecasting local grain prices: An evaluation of composite models in 500 corn cash markets doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✷✵✺✸✸✷.
    Paper not yet in RePEc: Add citation now
  84. Xu, X., Thurman, W.N., 2015b. Using local information to improve short-run corn cash price forecasts doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✷✽✺✽✹✺.
    Paper not yet in RePEc: Add citation now
  85. Xu, X., Zhang, Y., 2021a. Corn cash price forecasting with neural networks. Computers and Electronics in Agriculture 184, 106120. doi:✶✵✳✶✵✶✻✴❥✳❝♦♠♣❛❣✳✷✵✷✶✳✶✵✻✶✷✵.
    Paper not yet in RePEc: Add citation now
  86. Xu, X., Zhang, Y., 2021b. House price forecasting with neural networks. Intelligent Systems with Applications 12, 200052. doi:✶✵✳✶✵✶✻✴❥✳✐s✇❛✳✷✵✷✶✳✷✵✵✵✺✷.
    Paper not yet in RePEc: Add citation now
  87. Xu, X., Zhang, Y., 2021c. Individual time series and composite forecasting of the chinese stock index. Machine Learning with Applications 5, 100035. doi:✶✵✳✶✵✶✻✴❥✳♠❧✇❛✳✷✵✷✶✳ ✶✵✵✵✸✺.
    Paper not yet in RePEc: Add citation now
  88. Xu, X., Zhang, Y., 2021d. Network analysis of corn cash price comovements. Machine Learning with Applications 6, 100140. doi:✶✵✳✶✵✶✻✴❥✳♠❧✇❛✳✷✵✷✶✳✶✵✵✶✹✵.
    Paper not yet in RePEc: Add citation now
  89. Xu, X., Zhang, Y., 2021e. Rent index forecasting through neural networks. Journal of Economic Studies doi:✶✵✳✶✶✵✽✴❏❊❙✲✵✻✲✷✵✷✶✲✵✸✶✻.

  90. Xu, X., Zhang, Y., 2021f. Second-hand house price index forecasting with neural networks. Journal of Property Research doi:✶✵✳✶✵✽✵✴✵✾✺✾✾✾✶✻✳✷✵✷✶✳✶✾✾✻✹✹✻.
    Paper not yet in RePEc: Add citation now
  91. Xu, X., Zhang, Y., 2022a. Canola and soybean oil price forecasts via neural networks. Advances in Computational Intelligence .
    Paper not yet in RePEc: Add citation now
  92. Xu, X., Zhang, Y., 2022b. Cointegration between housing prices: evidence from one hundred chinese cities. Journal of Property Research .
    Paper not yet in RePEc: Add citation now
  93. Xu, X., Zhang, Y., 2022c. Coking coal futures price index forecasting with the neural network. Mineral Economics doi:✶✵✳✶✵✵✼✴s✶✸✺✻✸✲✵✷✷✲✵✵✸✶✶✲✾.
    Paper not yet in RePEc: Add citation now
  94. Xu, X., Zhang, Y., 2022d. Commodity price forecasting via neural networks for cofee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat. Intelligent Systems in Accounting, Finance and Management doi:✶✵✳✶✵✵✷✴✐s❛❢✳✶✺✶✾.
    Paper not yet in RePEc: Add citation now
  95. Xu, X., Zhang, Y., 2022e. Contemporaneous causality among one hundred chinese cities. Empirical Economics doi:✶✵✳✶✵✵✼✴s✵✵✶✽✶✲✵✷✶✲✵✷✶✾✵✲✺.
    Paper not yet in RePEc: Add citation now
  96. Xu, X., Zhang, Y., 2022f. Contemporaneous causality among residential housing prices of ten major chinese cities. International Journal of Housing Markets and Analysis doi:✶✵✳✶✶✵✽✴ ■❏❍▼❆✲✵✸✲✷✵✷✷✲✵✵✸✾.

  97. Xu, X., Zhang, Y., 2022g. Network analysis of housing price comovements of a hundred chinese cities. National Institute Economic Review doi:✶✵✳✶✵✶✼✴♥✐❡✳✷✵✷✶✳✸✹.
    Paper not yet in RePEc: Add citation now
  98. Xu, X., Zhang, Y., 2022h. Network analysis of price comovements among corn futures and cash prices. Journal of Agricultural & Food Industrial Organization .
    Paper not yet in RePEc: Add citation now
  99. Xu, X., Zhang, Y., 2022i. Residential housing price index forecasting via neural networks. Neural Computing and Applications doi:✶✵✳✶✵✵✼✴s✵✵✺✷✶✲✵✷✷✲✵✼✸✵✾✲②.
    Paper not yet in RePEc: Add citation now
  100. Xu, X., Zhang, Y., 2022j. Retail property price index forecasting through neural networks. Journal of Real Estate Portfolio Management .
    Paper not yet in RePEc: Add citation now
  101. Xu, X., Zhang, Y., 2022k. Soybean and soybean oil price forecasting through the nonlinear autoregressive neural network (narnn) and narnn with exogenous inputs (narnn–x). Intelligent Systems with Applications 13, 200061. doi:✶✵✳✶✵✶✻✴❥✳✐s✇❛✳✷✵✷✷✳✷✵✵✵✻✶.
    Paper not yet in RePEc: Add citation now
  102. Xu, X., Zhang, Y., 2022l. Thermal coal price forecasting via the neural network. Intelligent Systems with Applications 14, 200084. doi:✶✵✳✶✵✶✻✴❥✳✐s✇❛✳✷✵✷✷✳✷✵✵✵✽✹.
    Paper not yet in RePEc: Add citation now
  103. Yang, J., Awokuse, T.O., 2003. Asset storability and hedging efectiveness in commodity futures markets. Applied Economics Letters 10, 487–491. doi:✶✵✳✶✵✽✵✴✶✸✺✵✹✽✺✵✸✷✵✵✵✵✾✺✸✻✻.

  104. Yang, J., Cabrera, J., Wang, T., 2010. Nonlinearity, data-snooping, and stock index etf return predictability. European Journal of Operational Research 200, 498–507. doi:✶✵✳✶✵✶✻✴❥✳ ❡❥♦r✳✷✵✵✾✳✵✶✳✵✵✾.

  105. Yang, J., Haigh, M.S., Leatham, D.J., 2001. Agricultural liberalization policy and commodity price volatility: a garch application. Applied Economics Letters 8, 593–598. doi:✶✵✳✶✵✽✵✴ ✶✸✺✵✹✽✺✵✵✶✵✵✶✽✼✸✹.

  106. Yang, J., Leatham, D.J., 1998. Market eiciency of us grain markets: application of cointegration tests. Agribusiness: An International Journal 14, 107–112. doi:✶✵✳✶✵✵✷✴✭❙■❈■✮ ✶✺✷✵✲✻✷✾✼✭✶✾✾✽✵✸✴✵✹✮✶✹✿✷❁✶✵✼✿✿❆■❉✲❆●❘✸❃✸✳✵✳❈❖❀✷✲✻.
    Paper not yet in RePEc: Add citation now
  107. Yang, J., Li, Z., Wang, T., 2021. Price discovery in chinese agricultural futures markets: A comprehensive look. Journal of Futures Markets 41, 536–555. doi:✶✵✳✶✵✵✷✴❢✉t✳✷✷✶✼✾.

  108. Yang, J., Su, X., Kolari, J.W., 2008. Do euro exchange rates follow a martingale? some out-ofsample evidence. Journal of Banking & Finance 32, 729–740. doi:✶✵✳✶✵✶✻✴❥✳❥❜❛♥❦❢✐♥✳ ✷✵✵✼✳✵✺✳✵✵✾.

  109. Yang, J., Zhang, J., Leatham, D.J., 2003. Price and volatility transmission in international wheat futures markets. Annals of Economics and Finance 4, 37–50.

  110. Yang, L., Cheng, X., 2015. Predictive analytics on csi 300 index based on arima and rbf-ann combined model. Journal of Mathematical Finance 5, 393. doi:✶✵✳✹✷✸✻✴❥♠❢✳✷✵✶✺✳✺✹✵✸✸.
    Paper not yet in RePEc: Add citation now
  111. Yao, S., Luo, L., Peng, H., 2018. High-frequency stock trend forecast using lstm model, in: 2018 13th International Conference on Computer Science & Education (ICCSE), IEEE. pp. 1–4. doi:✶✵✳✶✶✵✾✴■❈❈❙❊✳✷✵✶✽✳✽✹✻✽✼✵✸.
    Paper not yet in RePEc: Add citation now
  112. Ye, X., Yan, R., Li, H., 2014. Forecasting trading volume in the chinese stock market based on the dynamic vwap. Studies in Nonlinear Dynamics & Econometrics 18, 125–144. doi:✶✵✳ ✶✺✶✺✴s♥❞❡✲✷✵✶✸✲✵✵✷✸.
    Paper not yet in RePEc: Add citation now
  113. Zhang, G.P., Qi, M., 2005. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 160, 501–514. doi:✶✵✳✶✵✶✻✴❥✳❡❥♦r✳✷✵✵✸✳✵✽✳ ✵✸✼.

  114. Zhang, Y.T., Sun, B., 2017. Analysis of csi 300 stock index futures price trend based on arima model. DEStech Transactions on Social Science, Education and Human Science doi:✶✵✳ ✶✷✼✽✸✴❞tss❡❤s✴s❡♠❡✷✵✶✼✴✶✽✵✷✷.
    Paper not yet in RePEc: Add citation now
  115. Zhou, J., Huo, X., Xu, X., Li, Y., 2019. Forecasting the carbon price using extreme-point symmetric mode decomposition and extreme learning machine optimized by the grey wolf optimizer algorithm. Energies 12, 950. doi:✶✵✳✸✸✾✵✴❡♥✶✷✵✺✵✾✺✵.

Cocites

Documents in RePEc which have cited the same bibliography

  1. EU Climate Change News Index: Forecasting EU ETS prices with online news. (2023). Palos, Peter ; Pap, Aron ; Hartvig, Aron Denes.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:54:y:2023:i:c:s1544612323000946.

    Full description at Econpapers || Download paper

  2. Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine. (2022). Ye, Cheng ; Vivian, Andrew ; Chen, Peng.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:313:y:2022:i:1:d:10.1007_s10479-021-04406-4.

    Full description at Econpapers || Download paper

  3. A novel framework for carbon price forecasting with uncertainties. (2022). Tian, Lixin ; Zhu, Mengrui ; Wang, Minggang.
    In: Energy Economics.
    RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003164.

    Full description at Econpapers || Download paper

  4. Equilibrium pricing for carbon emission in response to the target of carbon emission peaking. (2022). Jia, Shuaishuai ; Dong, Hao ; Huang, Zhehao.
    In: Energy Economics.
    RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003140.

    Full description at Econpapers || Download paper

  5. Forecasting the total market value of a shares traded in the Shenzhen stock exchange via the neural network. (2022). Zhang, Yun ; Xu, Xiaojie.
    In: Economics Bulletin.
    RePEc:ebl:ecbull:eb-21-01165.

    Full description at Econpapers || Download paper

  6. A VaR-Based Methodology for Assessing Carbon Price Risk across European Union Economic Sectors. (2021). Popovici, Oana ; Horobet, Alexandra ; Bulai, Vlad-Cosmin ; Dumitrescu, Sofia Adriana ; Belascu, Lucian.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:24:p:8424-:d:701935.

    Full description at Econpapers || Download paper

  7. A hybrid model for carbon price forecastingusing GARCH and long short-term memory network. (2021). Zhou, Dequn ; Wang, Qunwei ; Dai, Xingyu ; Huang, Yumeng.
    In: Applied Energy.
    RePEc:eee:appene:v:285:y:2021:i:c:s0306261921000489.

    Full description at Econpapers || Download paper

  8. The Linkages of Carbon Spot-Futures: Evidence from EU-ETS in the Third Phase. (2020). Zhang, Yinpeng ; Liu, Zhixin ; Chen, Hao ; Wu, You.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:6:p:2517-:d:336069.

    Full description at Econpapers || Download paper

  9. Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect. (2020). Zhao, Lili ; Wang, Xiong ; Wen, Fenghua.
    In: Energy Economics.
    RePEc:eee:eneeco:v:91:y:2020:i:c:s0140988320302413.

    Full description at Econpapers || Download paper

  10. Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm. (2019). Huo, Xuejing ; Zhou, Jianguo ; Li, Yushuo ; Xu, Xiaolei.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:5:p:950-:d:213213.

    Full description at Econpapers || Download paper

  11. Disentangling the drivers of carbon prices in Chinas ETS pilots — An EEMD approach. (2019). Xu, Jia ; Liu, YU ; He, Gang ; Tan, Xiujie.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:139:y:2019:i:c:p:1-9.

    Full description at Econpapers || Download paper

  12. Moving Average Market Timing in European Energy Markets: Production Versus Emissions. (2018). McAleer, Michael ; Ilomäki, Jukka ; Chang, Chia-Lin ; Laurila, Hannu ; Ilomaki, Jukka.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3281-:d:185360.

    Full description at Econpapers || Download paper

  13. Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns. (2018). Fang, Sheng ; Qu, Ling ; Li, Jianfeng ; Lu, Xinsheng.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:509:y:2018:i:c:p:551-566.

    Full description at Econpapers || Download paper

  14. Exploring the price dynamics of CO2 emissions allowances in Chinas emissions trading scheme pilots. (2017). Chang, Kai ; Pei, Ping ; Zhang, Chao ; Wu, Xin.
    In: Energy Economics.
    RePEc:eee:eneeco:v:67:y:2017:i:c:p:213-223.

    Full description at Econpapers || Download paper

  15. Modeling persistence of carbon emission allowance prices. (2016). GUPTA, RANGAN ; Gil-Alana, Luis ; de Gracia, Fernando Perez.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:55:y:2016:i:c:p:221-226.

    Full description at Econpapers || Download paper

  16. Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk. (2016). Nguyen, Duc Khuong ; Demirer, Riza ; Balcilar, Mehmet ; Hammoudeh, Shawkat.
    In: Energy Economics.
    RePEc:eee:eneeco:v:54:y:2016:i:c:p:159-172.

    Full description at Econpapers || Download paper

  17. Multifractal features of EUA and CER futures markets by using multifractal detrended fluctuation analysis based on empirical model decomposition. (2016). Xu, Wei ; Cao, Guangxi.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:83:y:2016:i:c:p:212-222.

    Full description at Econpapers || Download paper

  18. Carbon Price Analysis Using Empirical Mode Decomposition. (2015). Wei, Yi-Ming ; Chevallier, Julien ; Wang, Ping ; Zhu, Bangzhu.
    In: Computational Economics.
    RePEc:kap:compec:v:45:y:2015:i:2:p:195-206.

    Full description at Econpapers || Download paper

  19. Is carbon emissions trading profitable?. (2015). Sharma, Susan ; Narayan, Paresh.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:47:y:2015:i:c:p:84-92.

    Full description at Econpapers || Download paper

  20. Application of the Carbon Emission Pricing Model in the Korean Market. (2014). .
    In: Energy & Environment.
    RePEc:sae:engenv:v:25:y:2014:i:1:p:63-78.

    Full description at Econpapers || Download paper

  21. Asymmetric and nonlinear passthrough of energy prices to CO2 emission allowance prices. (2014). Sousa, Ricardo ; Nguyen, Duc Khuong ; Lahiani, Amine ; Hammoudeh, Shawkat.
    In: Working Papers.
    RePEc:ipg:wpaper:2014-82.

    Full description at Econpapers || Download paper

  22. What explains the short. (2014). Sousa, Ricardo ; Nguyen, Duc Khuong ; Hammoudeh, Shawkat.
    In: Working Papers.
    RePEc:ipg:wpaper:2014-81.

    Full description at Econpapers || Download paper

  23. Risk Spillovers across the Energy and Carbon Markets and Hedging Strategies for Carbon Risk. (2014). Balclar, Mehmet ; Hammoudeh, Shawkat ; Demirer, Rza .
    In: Working Papers.
    RePEc:ipg:wpaper:2014-552.

    Full description at Econpapers || Download paper

  24. Energy prices and CO2 emission allowance prices: A quantile regression approach. (2014). Sousa, Ricardo ; Nguyen, Duc Khuong ; Hammoudeh, Shawkat.
    In: Working Papers.
    RePEc:ipg:wpaper:2014-185.

    Full description at Econpapers || Download paper

  25. Carbon price analysis using empirical mode decomposition. (2014). Wei, Yi-Ming ; Chevallier, Julien ; Zhu, Bangzhu ; Wang, Ping.
    In: Working Papers.
    RePEc:ipg:wpaper:2014-156.

    Full description at Econpapers || Download paper

  26. Asymmetric and nonlinear passthrough of energy prices to CO2 emission allowance prices. (2014). Lahiani, Amine ; Hammoudeh, Shawkat.
    In: Working Papers.
    RePEc:ipg:wpaper:2014-082.

    Full description at Econpapers || Download paper

  27. What explains the short-term dynamics of the prices of CO2 emissions?. (2014). Hammoudeh, Shawkat.
    In: Working Papers.
    RePEc:ipg:wpaper:2014-081.

    Full description at Econpapers || Download paper

  28. Risk Spillovers across the Energy and Carbon Markets and Hedging Strategies for Carbon Risk. (2014). Nguyen, Duc Khuong ; Demirer, Riza ; Balcilar, Mehmet ; Hammoudeh, Shawkat.
    In: Working Papers.
    RePEc:emu:wpaper:15-10.pdf.

    Full description at Econpapers || Download paper

  29. Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence. (2014). Edenhofer, Ottmar ; Grosjean, Godefroy ; Fuss, Sabine ; Koch, Nicolas.
    In: Energy Policy.
    RePEc:eee:enepol:v:73:y:2014:i:c:p:676-685.

    Full description at Econpapers || Download paper

  30. Energy prices and CO2 emission allowance prices: A quantile regression approach. (2014). Sousa, Ricardo ; Nguyen, Duc Khuong ; Hammoudeh, Shawkat.
    In: Energy Policy.
    RePEc:eee:enepol:v:70:y:2014:i:c:p:201-206.

    Full description at Econpapers || Download paper

  31. What explain the short-term dynamics of the prices of CO2 emissions?. (2014). Sousa, Ricardo ; Nguyen, Duc Khuong ; Hammoudeh, Shawkat.
    In: Energy Economics.
    RePEc:eee:eneeco:v:46:y:2014:i:c:p:122-135.

    Full description at Econpapers || Download paper

  32. Evaluation of Different Hedging Strategies for Commodity Price Risks of Industrial Cogeneration Plants. (2013). Madlener, Reinhard ; Palzer, Andreas ; Westner, Gunther .
    In: FCN Working Papers.
    RePEc:ris:fcnwpa:2012_002.

    Full description at Econpapers || Download paper

  33. Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants. (2013). Madlener, Reinhard ; Palzer, Andreas ; Westner, Gunther .
    In: Energy Policy.
    RePEc:eee:enepol:v:59:y:2013:i:c:p:143-160.

    Full description at Econpapers || Download paper

  34. Energy prices and CO2 emission allowance prices: A quantile regression approach. (). Sousa, Ricardo ; Nguyen, Duc Khuong ; Lahiani, Amine ; Hammoudeh, Shawkat.
    In: NIPE Working Papers.
    RePEc:nip:nipewp:06/2014.

    Full description at Econpapers || Download paper

  35. Asymmetric and nonlinear pass-through of energy prices to CO2 emission allowance prices. (). Sousa, Ricardo ; Nguyen, Duc Khuong ; Lahiani, Amine ; Hammoudeh, Shawkat.
    In: NIPE Working Papers.
    RePEc:nip:nipewp:05/2014.

    Full description at Econpapers || Download paper

  36. What explains the short-term dynamics of the prices of CO2 emissions?. (). Sousa, Ricardo ; Nguyen, Duc Khuong ; Hammoudeh, Shawkat.
    In: NIPE Working Papers.
    RePEc:nip:nipewp:04/2014.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-18 22:45:53 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.