- Al Bataineh, A., Kaur, D., 2018. A comparative study of diferent curve itting algorithms in artiicial neural network using housing dataset, in: NAECON 2018-IEEE National Aerospace and Electronics Conference, IEEE. pp. 174–178. doi:✶✵✳✶✶✵✾✴◆❆❊❈❖◆✳✷✵✶✽✳✽✺✺✻✼✸✽.
Paper not yet in RePEc: Add citation now
- Altan, A., Karasu, S., Zio, E., 2021. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing 100, 106996. doi:✶✵✳✶✵✶✻✴❥✳❛s♦❝✳✷✵✷✵✳✶✵✻✾✾✻.
Paper not yet in RePEc: Add citation now
- Alvim, L., dos Santos, C.N., Milidiu, R.L., 2010. Daily volume forecasting using high frequency predictors, in: Proceedings of the 10th IASTED International Conference, p. 248.
Paper not yet in RePEc: Add citation now
Arouri, M.E.H., Jawadi, F., Nguyen, D.K., 2012. Nonlinearities in carbon spot-futures price relationships during phase ii of the eu ets. Economic Modelling 29, 884–892. doi:✶✵✳✶✵✶✻✴ ❥✳❡❝♦♥♠♦❞✳✷✵✶✶✳✶✶✳✵✵✸.
Awokuse, T.O., Yang, J., 2003. The informational role of commodity prices in formulating monetary policy: a reexamination. Economics Letters 79, 219–224. doi:✶✵✳✶✵✶✻✴ ❙✵✶✻✺✲✶✼✻✺✭✵✷✮✵✵✸✸✶✲✷.
Babula, R.A., Bessler, D.A., Reeder, J., Somwaru, A., 2004. Modeling us soy-based markets with directed acyclic graphs and bernanke structural var methods: The impacts of high soy meal and soybean prices. Journal of Food Distribution Research 35, 29–52. doi:✶✵✳✷✷✵✵✹✴ ❛❣✳❡❝♦♥✳✷✼✺✺✾.
Bessler, D.A., 1982. Adaptive expectations, the exponentially weighted forecast, and optimal statistical predictors: A revisit. Agricultural Economics Research 34, 16–23. doi:✶✵✳✷✷✵✵✹✴ ❛❣✳❡❝♦♥✳✶✹✽✽✶✾.
Bessler, D.A., 1990. Forecasting multiple time series with little prior information. American Journal of Agricultural Economics 72, 788–792. doi:✶✵✳✷✸✵✼✴✶✷✹✸✵✺✾.
Bessler, D.A., Babula, R.A., 1987. Forecasting wheat exports: do exchange rates matter? Journal of Business & Economic Statistics 5, 397–406. doi:✶✵✳✷✸✵✼✴✶✸✾✶✻✶✺.
- Bessler, D.A., Brandt, J.A., 1981. Forecasting livestock prices with individual and composite methods. Applied Economics 13, 513–522. doi:✶✵✳✶✵✽✵✴✵✵✵✸✻✽✹✽✶✵✵✵✵✵✵✶✻.
Paper not yet in RePEc: Add citation now
Bessler, D.A., Brandt, J.A., 1992. An analysis of forecasts of livestock prices. Journal of Economic Behavior & Organization 18, 249–263. doi:✶✵✳✶✵✶✻✴✵✶✻✼✲✷✻✽✶✭✾✷✮✾✵✵✸✵✲❋.
- Bessler, D.A., Chamberlain, P.J., 1988. Composite forecasting with dirichlet priors. Decision Sciences 19, 771–781. doi:✶✵✳✶✶✶✶✴❥✳✶✺✹✵✲✺✾✶✺✳✶✾✽✽✳t❜✵✵✸✵✷✳①.
Paper not yet in RePEc: Add citation now
Bessler, D.A., Hopkins, J.C., 1986. Forecasting an agricultural system with random walk priors. Agricultural Systems 21, 59–67. doi:✶✵✳✶✵✶✻✴✵✸✵✽✲✺✷✶❳✭✽✻✮✾✵✵✷✾✲✻.
Bessler, D.A., Kling, J.L., 1986. Forecasting vector autoregressions with bayesian priors. American Journal of Agricultural Economics 68, 144–151. doi:✶✵✳✷✸✵✼✴✶✷✹✶✻✺✾.
- Bessler, D.A., Wang, Z., 2012. D-separation, forecasting, and economic science: a conjecture. Theory and decision 73, 295–314. doi:✶✵✳✶✵✵✼✴s✶✶✷✸✽✲✵✶✷✲✾✸✵✺✲✽.
Paper not yet in RePEc: Add citation now
Bessler, D.A., Yang, J., Wongcharupan, M., 2003. Price dynamics in the international wheat market: modeling with error correction and directed acyclic graphs. Journal of Regional Science 43, 1–33.
- Blake, A., Kapetanios, G., 1999. Forecast combination and leading indicators: combining artiicial neural network and autoregressive forecasts. Manuscript, National Institute of Economic and Social Research .
Paper not yet in RePEc: Add citation now
- Bordino, I., Kourtellis, N., Laptev, N., Billawala, Y., 2014. Stock trade volume prediction with yahoo inance user browsing behavior, in: 2014 IEEE 30th International Conference on Data Engineering, IEEE. pp. 1168–1173. doi:✶✵✳✶✶✵✾✴■❈❉❊✳✷✵✶✹✳✻✽✶✻✼✸✸.
Paper not yet in RePEc: Add citation now
Brandt, J.A., Bessler, D.A., 1981. Composite forecasting: An application with us hog prices. American Journal of Agricultural Economics 63, 135–140. doi:✶✵✳✷✸✵✼✴✶✷✸✾✽✶✾.
- Brandt, J.A., Bessler, D.A., 1982. Forecasting with a dynamic regression model: A heuristic approach. North Central Journal of Agricultural Economics , 27–33doi:✶✵✳✷✸✵✼✴✶✸✹✾✵✾✻.
Paper not yet in RePEc: Add citation now
- Brandt, J.A., Bessler, D.A., 1983. Price forecasting and evaluation: An application in agriculture. Journal of Forecasting 2, 237–248. doi:✶✵✳✶✵✵✷✴❢♦r✳✸✾✽✵✵✷✵✸✵✻.
Paper not yet in RePEc: Add citation now
- Brandt, J.A., Bessler, D.A., 1984. Forecasting with vector autoregressions versus a univariate arima process: An empirical example with us hog prices. North Central Journal of Agricultural Economics , 29–36doi:✶✵✳✷✸✵✼✴✶✸✹✾✷✹✽.
Paper not yet in RePEc: Add citation now
Brownlees, C.T., Cipollini, F., Gallo, G.M., 2011. Intra-daily volume modeling and prediction for algorithmic trading. Journal of Financial Econometrics 9, 489–518. doi:✶✵✳✶✵✾✸✴ ❥❥❢✐♥❡❝✴♥❜q✵✷✹.
- Chen, D.T., Bessler, D.A., 1987. Forecasting the us cotton industry: Structural and time series approaches, in: Proceedings of the NCR-134 Conference on Applied Commodity Price Analysis. Forecasting, and Market Risk Management, Chicago Mercantile Exchange, Chicago. doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✷✽✺✹✻✸.
Paper not yet in RePEc: Add citation now
Chen, D.T., Bessler, D.A., 1990. Forecasting monthly cotton price: structural and time series approaches. International Journal of Forecasting 6, 103–113. doi:✶✵✳✶✵✶✻✴✵✶✻✾✲✷✵✼✵✭✾✵✮ ✾✵✶✵✶✲●.
- Chen, R., Feng, Y., Palomar, D., 2016. Forecasting intraday trading volume: a kalman ilter approach. Available at SSRN 3101695 .
Paper not yet in RePEc: Add citation now
- Chen, S., Chen, R., Ardell, G., Lin, B., 2011. End-of-day stock trading volume prediction with a two-component hierarchical model. The Journal of Trading 6, 61–68. doi:✶✵✳✸✾✵✺✴❥♦t✳ ✷✵✶✶✳✻✳✸✳✵✻✶.
Paper not yet in RePEc: Add citation now
Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. Journal of Business & Economic Statistics 13, 253–263. doi:✶✵✳✷✸✵✼✴✶✸✾✷✶✽✺.
- Doan, C.D., Liong, S.y., 2004. Generalization for multilayer neural network bayesian regularization or early stopping, in: Proceedings of Asia Paciic Association of Hydrology and Water Resources 2nd Conference, pp. 5–8.
Paper not yet in RePEc: Add citation now
- Gharehchopogh, F.S., Bonab, T.H., Khaze, S.R., 2013. A linear regression approach to prediction of stock market trading volume: a case study. International Journal of Managing Value and Supply Chains 4, 25. doi:✶✵✳✺✶✷✶✴✐❥♠✈s❝✳✷✵✶✸✳✹✸✵✸.
Paper not yet in RePEc: Add citation now
- Hagan, M.T., Menhaj, M.B., 1994. Training feedforward networks with the marquardt algorithm. IEEE transactions on Neural Networks 5, 989–993. doi:✶✵✳✶✶✵✾✴✼✷✳✸✷✾✻✾✼.
Paper not yet in RePEc: Add citation now
Harvey, D., Leybourne, S., Newbold, P., 1997. Testing the equality of prediction mean squared errors. International Journal of Forecasting 13, 281–291. doi:✶✵✳✶✵✶✻✴❙✵✶✻✾✲✷✵✼✵✭✾✻✮ ✵✵✼✶✾✲✹.
Huang, W., Lai, P.C., Bessler, D.A., 2018. On the changing structure among chinese equity markets: Hong kong, shanghai, and shenzhen. European Journal of Operational Research 264, 1020–1032. doi:✶✵✳✶✵✶✻✴❥✳❡❥♦r✳✷✵✶✼✳✵✶✳✵✶✾.
Joseph, K., Wintoki, M.B., Zhang, Z., 2011. Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting 27, 1116–1127. doi:✶✵✳✶✵✶✻✴❥✳✐❥❢♦r❡❝❛st✳✷✵✶✵✳✶✶✳✵✵✶.
Kaastra, I., Boyd, M.S., 1995. Forecasting futures trading volume using neural networks. The Journal of Futures Markets 15, 953. doi:✶✵✳✶✵✵✷✴❢✉t✳✸✾✾✵✶✺✵✽✵✻.
- Kano, Y., Shimizu, S., et al., 2003. Causal inference using nonnormality, in: Proceedings of the international symposium on science of modeling, the 30th anniversary of the information criterion, pp. 261–270.
Paper not yet in RePEc: Add citation now
Karasu, S., Altan, A., Bekiros, S., Ahmad, W., 2020. A new forecasting model with wrapperbased feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212, 118750. doi:✶✵✳✶✵✶✻✴❥✳❡♥❡r❣②✳✷✵✷✵✳✶✶✽✼✺✵.
- Karasu, S., Altan, A., Saraç, Z., Hacioğlu, R., 2017a. Estimation of fast varied wind speed based on narx neural network by using curve itting. International Journal of Energy Applications and Technologies 4, 137–146.
Paper not yet in RePEc: Add citation now
- Karasu, S., Altan, A., Saraç, Z., Hacioğlu, R., 2017b. Prediction of wind speed with non-linear autoregressive (nar) neural networks, in: 2017 25th Signal Processing and Communications Applications Conference (SIU), IEEE. pp. 1–4. doi:✶✵✳✶✶✵✾✴❙■❯✳✷✵✶✼✳✼✾✻✵✺✵✼.
Paper not yet in RePEc: Add citation now
- Kayri, M., 2016. Predictive abilities of bayesian regularization and levenberg–marquardt algorithms in artiicial neural networks: a comparative empirical study on social data. Mathematical and Computational Applications 21, 20. doi:✶✵✳✸✸✾✵✴♠❝❛✷✶✵✷✵✵✷✵.
Paper not yet in RePEc: Add citation now
- Khan, T.A., Alam, M., Shahid, Z., Mazliham, M., 2019. Comparative performance analysis of levenberg-marquardt, bayesian regularization and scaled conjugate gradient for the prediction of lash loods. Journal of Information Communication Technologies and Robotic Applications , 52–58.
Paper not yet in RePEc: Add citation now
Kling, J.L., Bessler, D.A., 1985. A comparison of multivariate forecasting procedures for economic time series. International Journal of Forecasting 1, 5–24. doi:✶✵✳✶✵✶✻✴ ❙✵✶✻✾✲✷✵✼✵✭✽✺✮✽✵✵✻✼✲✹.
- Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2, 164–168. doi:✶✵✳✶✵✾✵✴q❛♠✴✶✵✻✻✻.
Paper not yet in RePEc: Add citation now
- Long, W., Lu, Z., Cui, L., 2019. Deep learning-based feature engineering for stock price movement prediction. Knowledge-Based Systems 164, 163–173. doi:✶✵✳✶✵✶✻✴❥✳❦♥♦s②s✳✷✵✶✽✳ ✶✵✳✵✸✹.
Paper not yet in RePEc: Add citation now
- Lu, T., Li, Z., 2017. Forecasting csi 300 index using a hybrid functional link artiicial neural network and particle swarm optimization with improved wavelet mutation, in: 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA), IEEE. pp. 241–246. doi:✶✵✳✶✶✵✾✴■❈❈◆❊❆✳✷✵✶✼✳✺✺.
Paper not yet in RePEc: Add citation now
Ma, S., Li, P., 2021. Predicting daily trading volume via various hidden states. arXiv preprint arXiv:2107.07678 .
- Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431–441. doi:✶✵✳✶✶✸✼✴ ✵✶✶✶✵✸✵.
Paper not yet in RePEc: Add citation now
McIntosh, C.S., Bessler, D.A., 1988. Forecasting agricultural prices using a bayesian composite approach. Journal of Agricultural and Applied Economics 20, 73–80. doi:✶✵✳✶✵✶✼✴ ❙✵✵✽✶✸✵✺✷✵✵✵✶✼✻✶✶.
- Møller, M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525–533. doi:✶✵✳✶✵✶✻✴❙✵✽✾✸✲✻✵✽✵✭✵✺✮✽✵✵✺✻✲✺.
Paper not yet in RePEc: Add citation now
Nasir, M.A., Huynh, T.L.D., Nguyen, S.P., Duong, D., 2019. Forecasting cryptocurrency returns and volume using search engines. Financial Innovation 5, 1–13. doi:✶✵✳✶✶✽✻✴ s✹✵✽✺✹✲✵✶✽✲✵✶✶✾✲✽.
- Ning, S., 2020. Short-term prediction of the csi 300 based on the bp neural network model, in: Journal of Physics: Conference Series, IOP Publishing. p. 012054. doi:✶✵✳✶✵✽✽✴ ✶✼✹✷✲✻✺✾✻✴✶✹✸✼✴✶✴✵✶✷✵✺✹.
Paper not yet in RePEc: Add citation now
- Oliveira, N., Cortez, P., Areal, N., 2017. The impact of microblogging data for stock market prediction: Using twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Systems with applications 73, 125–144. doi:✶✵✳✶✵✶✻✴❥✳❡s✇❛✳✷✵✶✻✳✶✷✳ ✵✸✻.
Paper not yet in RePEc: Add citation now
- Paluszek, M., Thomas, S., 2020. Practical MATLAB Deep Learning: A Project-Based Approach. Apress.
Paper not yet in RePEc: Add citation now
- Satish, V., Saxena, A., Palmer, M., 2014. Predicting intraday trading volume and volume percentages. The Journal of Trading 9, 15–25. doi:✶✵✳✸✾✵✺✴❥♦t✳✷✵✶✹✳✾✳✸✳✵✶✺.
Paper not yet in RePEc: Add citation now
- Schwarz, G., et al., 1978. Estimating the dimension of a model. Annals of Statistics 6, 461–464. doi:✶✵✳✶✷✶✹✴❛♦s✴✶✶✼✻✸✹✹✶✸✻.
Paper not yet in RePEc: Add citation now
Selvamuthu, D., Kumar, V., Mishra, A., 2019. Indian stock market prediction using artiicial neural networks on tick data. Financial Innovation 5, 16. doi:✶✵✳✶✶✽✻✴ s✹✵✽✺✹✲✵✶✾✲✵✶✸✶✲✼.
- Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A., Jordan, M., 2006. A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research 7.
Paper not yet in RePEc: Add citation now
- Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K., 2011. Directlingam: A direct method for learning a linear non-gaussian structural equation model. The Journal of Machine Learning Research 12, 1225–1248.
Paper not yet in RePEc: Add citation now
- Shimizu, S., Kano, Y., 2008. Use of non-normality in structural equation modeling: Application to direction of causation. Journal of Statistical Planning and Inference 138, 3483–3491. doi:✶✵✳✶✵✶✻✴❥✳❥s♣✐✳✷✵✵✻✳✵✶✳✵✶✼.
Paper not yet in RePEc: Add citation now
Stock, J.H., Watson, M.W., 1998. A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series. Technical Report. National Bureau of Economic Research.
- Sun, B., Guo, H., Karimi, H.R., Ge, Y., Xiong, S., 2015. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series. Neurocomputing 151, 1528–1536. doi:✶✵✳✶✵✶✻✴❥✳♥❡✉❝♦♠✳✷✵✶✹✳✵✾✳✵✶✽.
Paper not yet in RePEc: Add citation now
- Wang, C., Chen, R., 2013. Forecasting csi 300 volatility: The role of persistence, asymmetry, and distributional assumption in garch models, in: 2013 Sixth International Conference on Business Intelligence and Financial Engineering, IEEE. pp. 355–358. doi:✶✵✳✶✶✵✾✴❇■❋❊✳ ✷✵✶✸✳✼✹.
Paper not yet in RePEc: Add citation now
- Wang, J., Hou, R., Wang, C., Shen, L., 2016. Improved v-support vector regression model based on variable selection and brain storm optimization for stock price forecasting. Applied Soft Computing 49, 164–178. doi:✶✵✳✶✵✶✻✴❥✳❛s♦❝✳✷✵✶✻✳✵✼✳✵✷✹.
Paper not yet in RePEc: Add citation now
- Wang, T., Yang, J., 2010. Nonlinearity and intraday eiciency tests on energy futures markets. Energy Economics 32, 496–503. doi:✶✵✳✶✵✶✻✴❥✳❡♥❡❝♦✳✷✵✵✾✳✵✽✳✵✵✶.
Paper not yet in RePEc: Add citation now
Wang, Z., Bessler, D.A., 2004. Forecasting performance of multivariate time series models with full and reduced rank: An empirical examination. International Journal of Forecasting 20, 683–695. doi:✶✵✳✶✵✶✻✴❥✳✐❥❢♦r❡❝❛st✳✷✵✵✹✳✵✶✳✵✵✷.
Wegener, C., von Spreckelsen, C., Basse, T., von Mettenheim, H.J., 2016. Forecasting government bond yields with neural networks considering cointegration. Journal of Forecasting 35, 86–92. doi:✶✵✳✶✵✵✷✴❢♦r✳✷✸✽✺.
- Xu, X., 2014a. Causality and price discovery in us corn markets: An application of error correction modeling and directed acyclic graphs doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✶✻✾✽✵✻.
Paper not yet in RePEc: Add citation now
- Xu, X., 2014b. Price discovery in us corn cash and futures markets: The role of cash market selection doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✶✻✾✽✵✾.
Paper not yet in RePEc: Add citation now
- Xu, X., 2015a. Causality, price discovery, and price forecasts: Evidence from us corn cash and futures markets .
Paper not yet in RePEc: Add citation now
Xu, X., 2015b. Cointegration among regional corn cash prices. Economics Bulletin 35, 2581–2594. URL: ❤tt♣✿✴✴✇✇✇✳❛❝❝❡ss❡❝♦♥✳❝♦♠✴P✉❜s✴❊❇✴✷✵✶✺✴❱♦❧✉♠❡✸✺✴ ❊❇✲✶✺✲❱✸✺✲■✹✲P✷✺✾✳♣❞❢.
Xu, X., 2017a. Contemporaneous causal orderings of us corn cash prices through directed acyclic graphs. Empirical Economics 52, 731–758. doi:✶✵✳✶✵✵✼✴s✵✵✶✽✶✲✵✶✻✲✶✵✾✹✲✹.
Xu, X., 2017b. The rolling causal structure between the chinese stock index and futures. Financial Markets and Portfolio Management 31, 491–509. doi:✶✵✳✶✵✵✼✴s✶✶✹✵✽✲✵✶✼✲✵✷✾✾✲✼.
Xu, X., 2017c. Short-run price forecast performance of individual and composite models for 496 corn cash markets. Journal of Applied Statistics 44, 2593–2620. doi:✶✵✳✶✵✽✵✴✵✷✻✻✹✼✻✸✳ ✷✵✶✻✳✶✷✺✾✸✾✾.
Xu, X., 2018a. Causal structure among us corn futures and regional cash prices in the time and frequency domain. Journal of Applied Statistics 45, 2455–2480. doi:✶✵✳✶✵✽✵✴✵✷✻✻✹✼✻✸✳ ✷✵✶✼✳✶✹✷✸✵✹✹.
Xu, X., 2018b. Cointegration and price discovery in us corn cash and futures markets. Empirical Economics 55, 1889–1923. doi:✶✵✳✶✵✵✼✴s✵✵✶✽✶✲✵✶✼✲✶✸✷✷✲✻.
Xu, X., 2018c. Intraday price information lows between the csi300 and futures market: an application of wavelet analysis. Empirical Economics 54, 1267–1295. doi:✶✵✳✶✵✵✼✴ s✵✵✶✽✶✲✵✶✼✲✶✷✹✺✲✷.
- Xu, X., 2018d. Linear and nonlinear causality between corn cash and futures prices. Journal of Agricultural & Food Industrial Organization 16, 20160006. doi:✶✵✳✶✺✶✺✴ ❥❛❢✐♦✲✷✵✶✻✲✵✵✵✻.
Paper not yet in RePEc: Add citation now
- Xu, X., 2018e. Using local information to improve short-run corn price forecasts. Journal of Agricultural & Food Industrial Organization 16. doi:✶✵✳✶✺✶✺✴❥❛❢✐♦✲✷✵✶✼✲✵✵✶✽.
Paper not yet in RePEc: Add citation now
- Xu, X., 2019a. Contemporaneous and granger causality among us corn cash and futures prices. European Review of Agricultural Economics 46, 663–695. doi:✶✵✳✶✵✾✸✴❡r❛❡✴❥❜②✵✸✻.
Paper not yet in RePEc: Add citation now
Xu, X., 2019b. Contemporaneous causal orderings of csi300 and futures prices through directed acyclic graphs. Economics Bulletin 39, 2052–2077. URL: ❤tt♣✿✴✴✇✇✇✳❛❝❝❡ss❡❝♦♥✳❝♦♠✴ P✉❜s✴❊❇✴✷✵✶✾✴❱♦❧✉♠❡✸✾✴❊❇✲✶✾✲❱✸✾✲■✸✲P✶✾✷✳♣❞❢.
Xu, X., 2019c. Price dynamics in corn cash and futures markets: cointegration, causality, and forecasting through a rolling window approach. Financial Markets and Portfolio Management 33, 155–181. doi:✶✵✳✶✵✵✼✴s✶✶✹✵✽✲✵✶✾✲✵✵✸✸✵✲✼.
Xu, X., 2020. Corn cash price forecasting. American Journal of Agricultural Economics 102, 1297–1320. doi:✶✵✳✶✵✵✷✴❛❥❛❡✳✶✷✵✹✶.
- Xu, X., Thurman, W., 2015a. Forecasting local grain prices: An evaluation of composite models in 500 corn cash markets doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✷✵✺✸✸✷.
Paper not yet in RePEc: Add citation now
- Xu, X., Thurman, W.N., 2015b. Using local information to improve short-run corn cash price forecasts doi:✶✵✳✷✷✵✵✹✴❛❣✳❡❝♦♥✳✷✽✺✽✹✺.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2021a. Corn cash price forecasting with neural networks. Computers and Electronics in Agriculture 184, 106120. doi:✶✵✳✶✵✶✻✴❥✳❝♦♠♣❛❣✳✷✵✷✶✳✶✵✻✶✷✵.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2021b. House price forecasting with neural networks. Intelligent Systems with Applications 12, 200052. doi:✶✵✳✶✵✶✻✴❥✳✐s✇❛✳✷✵✷✶✳✷✵✵✵✺✷.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2021c. Individual time series and composite forecasting of the chinese stock index. Machine Learning with Applications 5, 100035. doi:✶✵✳✶✵✶✻✴❥✳♠❧✇❛✳✷✵✷✶✳ ✶✵✵✵✸✺.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2021d. Network analysis of corn cash price comovements. Machine Learning with Applications 6, 100140. doi:✶✵✳✶✵✶✻✴❥✳♠❧✇❛✳✷✵✷✶✳✶✵✵✶✹✵.
Paper not yet in RePEc: Add citation now
Xu, X., Zhang, Y., 2021e. Rent index forecasting through neural networks. Journal of Economic Studies doi:✶✵✳✶✶✵✽✴❏❊❙✲✵✻✲✷✵✷✶✲✵✸✶✻.
- Xu, X., Zhang, Y., 2021f. Second-hand house price index forecasting with neural networks. Journal of Property Research doi:✶✵✳✶✵✽✵✴✵✾✺✾✾✾✶✻✳✷✵✷✶✳✶✾✾✻✹✹✻.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022a. Canola and soybean oil price forecasts via neural networks. Advances in Computational Intelligence .
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022b. Cointegration between housing prices: evidence from one hundred chinese cities. Journal of Property Research .
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022c. Coking coal futures price index forecasting with the neural network. Mineral Economics doi:✶✵✳✶✵✵✼✴s✶✸✺✻✸✲✵✷✷✲✵✵✸✶✶✲✾.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022d. Commodity price forecasting via neural networks for cofee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat. Intelligent Systems in Accounting, Finance and Management doi:✶✵✳✶✵✵✷✴✐s❛❢✳✶✺✶✾.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022e. Contemporaneous causality among one hundred chinese cities. Empirical Economics doi:✶✵✳✶✵✵✼✴s✵✵✶✽✶✲✵✷✶✲✵✷✶✾✵✲✺.
Paper not yet in RePEc: Add citation now
Xu, X., Zhang, Y., 2022f. Contemporaneous causality among residential housing prices of ten major chinese cities. International Journal of Housing Markets and Analysis doi:✶✵✳✶✶✵✽✴ ■❏❍▼❆✲✵✸✲✷✵✷✷✲✵✵✸✾.
- Xu, X., Zhang, Y., 2022g. Network analysis of housing price comovements of a hundred chinese cities. National Institute Economic Review doi:✶✵✳✶✵✶✼✴♥✐❡✳✷✵✷✶✳✸✹.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022h. Network analysis of price comovements among corn futures and cash prices. Journal of Agricultural & Food Industrial Organization .
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022i. Residential housing price index forecasting via neural networks. Neural Computing and Applications doi:✶✵✳✶✵✵✼✴s✵✵✺✷✶✲✵✷✷✲✵✼✸✵✾✲②.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022j. Retail property price index forecasting through neural networks. Journal of Real Estate Portfolio Management .
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022k. Soybean and soybean oil price forecasting through the nonlinear autoregressive neural network (narnn) and narnn with exogenous inputs (narnn–x). Intelligent Systems with Applications 13, 200061. doi:✶✵✳✶✵✶✻✴❥✳✐s✇❛✳✷✵✷✷✳✷✵✵✵✻✶.
Paper not yet in RePEc: Add citation now
- Xu, X., Zhang, Y., 2022l. Thermal coal price forecasting via the neural network. Intelligent Systems with Applications 14, 200084. doi:✶✵✳✶✵✶✻✴❥✳✐s✇❛✳✷✵✷✷✳✷✵✵✵✽✹.
Paper not yet in RePEc: Add citation now
Yang, J., Awokuse, T.O., 2003. Asset storability and hedging efectiveness in commodity futures markets. Applied Economics Letters 10, 487–491. doi:✶✵✳✶✵✽✵✴✶✸✺✵✹✽✺✵✸✷✵✵✵✵✾✺✸✻✻.
Yang, J., Cabrera, J., Wang, T., 2010. Nonlinearity, data-snooping, and stock index etf return predictability. European Journal of Operational Research 200, 498–507. doi:✶✵✳✶✵✶✻✴❥✳ ❡❥♦r✳✷✵✵✾✳✵✶✳✵✵✾.
Yang, J., Haigh, M.S., Leatham, D.J., 2001. Agricultural liberalization policy and commodity price volatility: a garch application. Applied Economics Letters 8, 593–598. doi:✶✵✳✶✵✽✵✴ ✶✸✺✵✹✽✺✵✵✶✵✵✶✽✼✸✹.
- Yang, J., Leatham, D.J., 1998. Market eiciency of us grain markets: application of cointegration tests. Agribusiness: An International Journal 14, 107–112. doi:✶✵✳✶✵✵✷✴✭❙■❈■✮ ✶✺✷✵✲✻✷✾✼✭✶✾✾✽✵✸✴✵✹✮✶✹✿✷❁✶✵✼✿✿❆■❉✲❆●❘✸❃✸✳✵✳❈❖❀✷✲✻.
Paper not yet in RePEc: Add citation now
Yang, J., Li, Z., Wang, T., 2021. Price discovery in chinese agricultural futures markets: A comprehensive look. Journal of Futures Markets 41, 536–555. doi:✶✵✳✶✵✵✷✴❢✉t✳✷✷✶✼✾.
Yang, J., Su, X., Kolari, J.W., 2008. Do euro exchange rates follow a martingale? some out-ofsample evidence. Journal of Banking & Finance 32, 729–740. doi:✶✵✳✶✵✶✻✴❥✳❥❜❛♥❦❢✐♥✳ ✷✵✵✼✳✵✺✳✵✵✾.
Yang, J., Zhang, J., Leatham, D.J., 2003. Price and volatility transmission in international wheat futures markets. Annals of Economics and Finance 4, 37–50.
- Yang, L., Cheng, X., 2015. Predictive analytics on csi 300 index based on arima and rbf-ann combined model. Journal of Mathematical Finance 5, 393. doi:✶✵✳✹✷✸✻✴❥♠❢✳✷✵✶✺✳✺✹✵✸✸.
Paper not yet in RePEc: Add citation now
- Yao, S., Luo, L., Peng, H., 2018. High-frequency stock trend forecast using lstm model, in: 2018 13th International Conference on Computer Science & Education (ICCSE), IEEE. pp. 1–4. doi:✶✵✳✶✶✵✾✴■❈❈❙❊✳✷✵✶✽✳✽✹✻✽✼✵✸.
Paper not yet in RePEc: Add citation now
- Ye, X., Yan, R., Li, H., 2014. Forecasting trading volume in the chinese stock market based on the dynamic vwap. Studies in Nonlinear Dynamics & Econometrics 18, 125–144. doi:✶✵✳ ✶✺✶✺✴s♥❞❡✲✷✵✶✸✲✵✵✷✸.
Paper not yet in RePEc: Add citation now
Zhang, G.P., Qi, M., 2005. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 160, 501–514. doi:✶✵✳✶✵✶✻✴❥✳❡❥♦r✳✷✵✵✸✳✵✽✳ ✵✸✼.
- Zhang, Y.T., Sun, B., 2017. Analysis of csi 300 stock index futures price trend based on arima model. DEStech Transactions on Social Science, Education and Human Science doi:✶✵✳ ✶✷✼✽✸✴❞tss❡❤s✴s❡♠❡✷✵✶✼✴✶✽✵✷✷.
Paper not yet in RePEc: Add citation now
Zhou, J., Huo, X., Xu, X., Li, Y., 2019. Forecasting the carbon price using extreme-point symmetric mode decomposition and extreme learning machine optimized by the grey wolf optimizer algorithm. Energies 12, 950. doi:✶✵✳✸✸✾✵✴❡♥✶✷✵✺✵✾✺✵.