- Abid, A., Farooqi, M., and Zou, J. (2021). Persistent anti-muslim bias in large language models. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’21, page 298–306, New York, NY, USA. Association for Computing Machinery.
Paper not yet in RePEc: Add citation now
- Acemoglu, D. and Autor, D. (2011a). Skills, tasks and technologies: Implications for employment and earnings. In Handbook of labor economics, volume 4, pages 1043–1171. Elsevier.
Paper not yet in RePEc: Add citation now
- Acemoglu, D. and Autor, D. (2011b). Skills, Tasks and Technologies: Implications for Employment and Earnings. In Ashenfelter, O. and Card, D., editors, Handbook of Labor Economics, volume 4 of Handbook of Labor Economics, chapter 12, pages 1043–1171. Elsevier.
Paper not yet in RePEc: Add citation now
Acemoglu, D. and Restrepo, P. (2018). The race between man and machine: Implications of technology for growth, factor shares, and employment. American economic review, 108(6):1488–1542.
Acemoglu, D. and Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2):3–30.
Acemoglu, D. and Restrepo, P. (2022a). Demographics and automation. The Review of Economic Studies, 89(1):1–44.
Acemoglu, D. and Restrepo, P. (2022b). Tasks, automation, and the rise in us wage inequality. Econometrica, 90(5):1973–2016.
Acemoglu, D., Autor, D., Hazell, J., and Restrepo, P. (2020). Ai and jobs: Evidence from online vacancies. Technical report, National Bureau of Economic Research.
- Aghion, P., Jones, B. F., and Jones, C. I. (2018). Artificial intelligence and economic growth. In The economics of artificial intelligence: An agenda, pages 237–282. University of Chicago Press.
Paper not yet in RePEc: Add citation now
Agrawal, A. K., Gans, J. S., and Goldfarb, A. (2021). Ai adoption and system-wide change. Technical report, National Bureau of Economic Research.
Arntz, M., Gregory, T., and Zierahn, U. (2017). Revisiting the risk of automation. Economics Letters, 159:157–160.
- Autor, D. H., Katz, L. F., and Kearney, M. S. (2006). The polarization of the us labor market. American economic review, 96(2):189–194.
Paper not yet in RePEc: Add citation now
Autor, D. H., Levy, F., and Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly journal of economics, 118(4):1279–1333.
Autor, D., Chin, C., Salomons, A. M., and Seegmiller, B. (2022a). New frontiers: The origins and content of new work, 1940–2018. Technical report, National Bureau of Economic Research.
- Autor, D., Mindell, D. A., and Reynolds, E. B. (2022b). The Work of the Future: Building Better Jobs in an Age of Intelligent Machines. The MIT Press.
Paper not yet in RePEc: Add citation now
- Babina, T., Fedyk, A., He, A., and Hodson, J. (2021). Artificial intelligence, firm growth, and product innovation. Firm Growth, and Product Innovation (November 9, 2021).
Paper not yet in RePEc: Add citation now
Benzell, S. G., Kotlikoff, L. J., LaGarda, G., and Ye, V. Y. (2021). Simulating endogenous global automation. Working Paper 29220, National Bureau of Economic Research.
- Bessen, J. (2018). Artificial intelligence and jobs: The role of demand. In The economics of artificial intelligence: an agenda, pages 291–307. University of Chicago Press.
Paper not yet in RePEc: Add citation now
- BLS (2022). Employment by detailed occupation.
Paper not yet in RePEc: Add citation now
- BLS (2023a). Demographic characteristics (cps).
Paper not yet in RePEc: Add citation now
- BLS (2023b). Occupational outlook handbook a-z index.
Paper not yet in RePEc: Add citation now
- Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.
Paper not yet in RePEc: Add citation now
- Bresnahan, T. (2019). Artificial intelligence technologies and aggregate growth prospects.
Paper not yet in RePEc: Add citation now
Bresnahan, T. F. (1999). Computerisation and wage dispersion: an analytical reinterpretation. The economic journal, 109(456):390–415.
- Bresnahan, T. F. and Trajtenberg, M. (1995). General purpose technologies ‘engines of growth’? Journal of econometrics, 65(1):83–108.
Paper not yet in RePEc: Add citation now
Bresnahan, T. F., Brynjolfsson, E., and Hitt, L. M. (2002). Information technology, workplace organization, and the demand for skilled labor: Firm-level evidence. The quarterly journal of economics, 117(1):339–376.
Bresnahan, T., Greenstein, S., Brownstone, D., and Flamm, K. (1996). Technical progress and co-invention in computing and in the uses of computers. Brookings Papers on Economic Activity. Microeconomics, 1996:1–83.
- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901.
Paper not yet in RePEc: Add citation now
- Brynjolfsson, E. and Mitchell, T. (2017). What can machine learning do? workforce implications. Science, 358(6370):1530–1534.
Paper not yet in RePEc: Add citation now
- Brynjolfsson, E., Frank, M. R., Mitchell, T., Rahwan, I., and Rock, D. (2023). Quantifying the Distribution of Machine Learning’s Impact on Work. Forthcoming.
Paper not yet in RePEc: Add citation now
Brynjolfsson, E., Mitchell, T., and Rock, D. (2018). What can machines learn, and what does it mean for occupations and the economy? AEA Papers and Proceedings, 108:43–47.
Brynjolfsson, E., Rock, D., and Syverson, C. (2021). The productivity j-curve: How intangibles complement general purpose technologies. American Economic Journal: Macroeconomics, 13(1):333–72.
- Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. (2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.
Paper not yet in RePEc: Add citation now
- Chow, A. R. (2023). Why ChatGPT Is the Fastest Growing Web Platform Ever | Time.
Paper not yet in RePEc: Add citation now
Cockburn, I. M., Henderson, R., and Stern, S. (2018). The impact of artificial intelligence on innovation: An exploratory analysis. In The economics of artificial intelligence: An agenda, pages 115–146. University of Chicago Press.
- David, P. A. (1990). The dynamo and the computer: an historical perspective on the modern productivity paradox. The American Economic Review, 80(2):355–361.
Paper not yet in RePEc: Add citation now
- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv, abs/1810.04805.
Paper not yet in RePEc: Add citation now
- Dixon, J., Hong, B., and Wu, L. (2021). The robot revolution: Managerial and employment consequences for firms. Management Science, 67(9):5586–5605.
Paper not yet in RePEc: Add citation now
- Feigenbaum, J. J. and Gross, D. P. (2021). Organizational frictions and increasing returns to automation: Lessons from at&t in the twentieth century. Technical report, National Bureau of Economic Research.
Paper not yet in RePEc: Add citation now
Felten, E. W., Raj, M., and Seamans, R. (2018). A method to link advances in artificial intelligence to occupational abilities. AEA Papers and Proceedings, 108:54–57.
Felten, E., Raj, M., and Seamans, R. (2023). How will language modelers like chatgpt affect occupations and industries? arXiv preprint arXiv:2303.01157.
- Frey, C. B. (2019). The technology trap. In The Technology Trap. Princeton University Press.
Paper not yet in RePEc: Add citation now
Frey, C. B. and Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114(C):254–280.
Goldfarb, A., Taska, B., and Teodoridis, F. (2023). Could machine learning be a general purpose technology? a comparison of emerging technologies using data from online job postings. Research Policy, 52(1):104653.
- Goldstein, J. A., Sastry, G., Musser, M., DiResta, R., Gentzel, M., and Sedova, K. (2023). Generative language models and automated influence operations: Emerging threats and potential mitigations.
Paper not yet in RePEc: Add citation now
- Grace, K., Salvatier, J., Dafoe, A., Zhang, B., and Evans, O. (2018). When will ai exceed human performance? evidence from ai experts. Journal of Artificial Intelligence Research, 62:729–754.
Paper not yet in RePEc: Add citation now
- Hernandez, D., Kaplan, J., Henighan, T., and McCandlish, S. (2021). Scaling laws for transfer. arXiv preprint arXiv:2102.01293.
Paper not yet in RePEc: Add citation now
Horton, J. J. (2023). Large language models as simulated economic agents: What can we learn from homo silicus? arXiv preprint arXiv:2301.07543.
- Huang, M.-H. and Rust, R. T. (2018). Artificial intelligence in service. Journal of service research, 21(2):155–172.
Paper not yet in RePEc: Add citation now
- Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.
Paper not yet in RePEc: Add citation now
- Khlaaf, H., Mishkin, P., Achiam, J., Krueger, G., and Brundage, M. (2022). A hazard analysis framework for code synthesis large language models.
Paper not yet in RePEc: Add citation now
Klinova, K. and Korinek, A. (2021). Ai and shared prosperity. In AIES 2021 - Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society.
Kogan, L., Papanikolaou, D., Schmidt, L. D. W., and Seegmiller, B. (2021). Technology, vintage-specific human capital, and labor displacement: Evidence from linking patents with occupations. Working Paper 29552, National Bureau of Economic Research.
Korinek, A. (2023). Language models and cognitive automation for economic research. Technical report, National Bureau of Economic Research.
- Korinek, A. and Stiglitz, J. E. (2018). Artificial intelligence and its implications for income distribution and unemployment. In The economics of artificial intelligence: An agenda, pages 349–390. University of Chicago Press.
Paper not yet in RePEc: Add citation now
Lipsey, R. G., Carlaw, K. I., and Bekar, C. T. (2005). Economic transformations: general purpose technologies and long-term economic growth. Oup Oxford.
Meindl, B., Frank, M. R., and Mendonça, J. (2021). Exposure of occupations to technologies of the fourth industrial revolution. arXiv preprint arXiv:2110.13317.
- Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B., Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., et al. (2023). Augmented language models: a survey. arXiv preprint arXiv:2302.07842.
Paper not yet in RePEc: Add citation now
Moll, B., Rachel, L., and Restrepo, P. (2021). Uneven growth: Automation’s impact on income and wealth inequality. SSRN Electronic Journal.
- Mollick, E. R. and Mollick, L. (2022). New modes of learning enabled by ai chatbots: Three methods and assignments. Available at SSRN.
Paper not yet in RePEc: Add citation now
- Noy, S. and Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Available at SSRN 4375283.
Paper not yet in RePEc: Add citation now
- OpenAI (2023a). Gpt-4 system card. Technical report, OpenAI.
Paper not yet in RePEc: Add citation now
- Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., et al. (2022). Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.
Paper not yet in RePEc: Add citation now
- Peng, S., Kalliamvakou, E., Cihon, P., and Demirer, M. (2023). The impact of ai on developer productivity: Evidence from github copilot. arXiv preprint arXiv:2302.06590.
Paper not yet in RePEc: Add citation now
- ResumeBuilder.com (2023). 1 in 4 companies have already replaced workers with chatgpt.
Paper not yet in RePEc: Add citation now
- Rock, D. (2019). Engineering value: The returns to technological talent and investments in artificial intelligence. Available at SSRN 3427412.
Paper not yet in RePEc: Add citation now
- Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N., and Scialom, T. (2023). Toolformer: Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761.
Paper not yet in RePEc: Add citation now
- Schramowski, P., Turan, C., Andersen, N., Rothkopf, C. A., and Kersting, K. (2022). Large pre-trained language models contain human-like biases of what is right and wrong to do. Nature Machine Intelligence, 4(3):258–268.
Paper not yet in RePEc: Add citation now
- Shahaf, D. and Horvitz, E. (2010). Generalized task markets for human and machine computation. Proceedings of the AAAI Conference on Artificial Intelligence.
Paper not yet in RePEc: Add citation now
- Singla, A. K., Horvitz, E., Kohli, P., and Krause, A. (2015). Learning to hire teams. In AAAI Conference on Human Computation & Crowdsourcing.
Paper not yet in RePEc: Add citation now
- Sorensen, T., Robinson, J., Rytting, C., Shaw, A., Rogers, K., Delorey, A., Khalil, M., Fulda, N., and Wingate, D. (2022). An information-theoretic approach to prompt engineering without ground truth labels. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics.
Paper not yet in RePEc: Add citation now
- Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., et al. (2022). Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239.
Paper not yet in RePEc: Add citation now
- Tolan, S., Pesole, A., Martínez-Plumed, F., Fernández-Macías, E., Hernández-Orallo, J., and Gómez, E. (2021). Measuring the occupational impact of ai: tasks, cognitive abilities and ai benchmarks. Journal of Artificial Intelligence Research, 71:191–236.
Paper not yet in RePEc: Add citation now
Van Reenen, J. (2011). Wage inequality, technology and trade: 21st century evidence. Labour economics, 18(6):730–741.
- Webb, M. (2020). The impact of artificial intelligence on the labor market. Working paper, Stanford University.
Paper not yet in RePEc: Add citation now
- Weidinger, L. et al. (2021). Ethical and social risks of harm from language models. arXiv:2112.04359 [cs].
Paper not yet in RePEc: Add citation now
- Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P.-S., Mellor, J., Glaese, A., Cheng, M., Balle, B., Kasirzadeh, A., Biles, C., Brown, S., Kenton, Z., Hawkins, W., Stepleton, T., Birhane, A., Hendricks, L. A., Rimell, L., Isaac, W., Haas, J., Legassick, S., Irving, G., and Gabriel, I. (2022). Taxonomy of risks posed by language models. In 2022 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’22, page 214–229, New York, NY, USA. Association for Computing Machinery.
Paper not yet in RePEc: Add citation now
WORKING PAPER Acemoglu, D. (2002). Technical change, inequality, and the labor market. Journal of Economic Literature, 40.
- WORKING PAPER Baumol, W. J. (2012). The cost disease: Why computers get cheaper and health care doesn’t. Yale university press.
Paper not yet in RePEc: Add citation now
- WORKING PAPER Cheng, Z., Lee, D., and Tambe, P. (2022). Innovae: Generative ai for understanding patents and innovation. Available at SSRN.
Paper not yet in RePEc: Add citation now
- WORKING PAPER Katz, L. F. and Murphy, K. M. (1992). Changes in relative wages, 1963–1987: supply and demand factors. The quarterly journal of economics, 107(1):35–78.
Paper not yet in RePEc: Add citation now
- WORKING PAPER Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.
Paper not yet in RePEc: Add citation now
- Zolas, N., Kroff, Z., Brynjolfsson, E., McElheran, K., Beede, D. N., Buffington, C., Goldschlag, N., Foster, L., and Dinlersoz, E. (2021). Advanced technologies adoption and use by us firms: Evidence from the annual business survey. Technical report, National Bureau of Economic Research.
Paper not yet in RePEc: Add citation now