Nothing Special   »   [go: up one dir, main page]

create a website
Economic impacts of AI-augmented R&D. (2023). Thompson, Neil ; Emery-Xu, Nicholas ; Besiroglu, Tamay.
In: Papers.
RePEc:arx:papers:2212.08198.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 75

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Algorithmic management in scientific research. (2024). Sauermann, Henry ; Koehler, Maximilian.
    In: Research Policy.
    RePEc:eee:respol:v:53:y:2024:i:4:s0048733324000349.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. — (1993). “Equilibrium R&D and the patent–R&D ratio: Us evidence”. In: The American Economic Review 83.2, pp. 450–457.
    Paper not yet in RePEc: Add citation now
  2. Abdih, Yasser and Frederick Joutz (2006). “Relating the knowledge production function to total factor productivity: an endogenous growth puzzle”. In: IMF Staff Papers 53.2, pp. 242–271.

  3. Abis, Simona and Laura Veldkamp (2020). “The Changing Economics of Knowledge Production”. en. In: SSRN Electronic Journal. issn: 1556-5068. doi: 10.2139/ssrn.3570130. url: https://www.ssrn.com/ abstract=3570130.
    Paper not yet in RePEc: Add citation now
  4. Aghion, Philippe, Benjamin F Jones, and Charles I. Jones (May 2019). “Artificial Intelligence and Economic Growth”. In: The Economics of Artificial Intelligence: An Agenda. University of Chicago Press, pp. 237– 282.
    Paper not yet in RePEc: Add citation now
  5. Agrawal, Ajay (May 2022). Introduction by Ajay Agrawal. url: https://www.economicsofai.com/nberconference -toronto-2017.
    Paper not yet in RePEc: Add citation now
  6. Agrawal, Ajay, John McHale, and Alexander Oettl (May 2019). “Finding Needles in Haystacks: Artificial Intelligence and Recombinant Growth”. In: The Economics of Artificial Intelligence: An Agenda. University of Chicago Press, pp. 149–174.
    Paper not yet in RePEc: Add citation now
  7. Agrawal, Ajay, Joshua Gans, and Avi Goldfarb (2018). Prediction machines: the simple economics of artificial intelligence. Harvard Business Press.
    Paper not yet in RePEc: Add citation now
  8. Ahmed, Nur and Muntasir Wahed (2020). “The de-democratization of ai: Deep learning and the compute divide in artificial intelligence research”. In: arXiv preprint arXiv:2010.15581.
    Paper not yet in RePEc: Add citation now
  9. Alom, Md Zahangir, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K Asari (2018). “The history began from AlexNet: A comprehensive survey on deep learning approaches”. In: arXiv preprint arXiv:1803.01164.
    Paper not yet in RePEc: Add citation now
  10. Aria, Massimo and Corrado Cuccurullo (2017). “bibliometrix: An R-tool for comprehensive science mapping analysis”. In: Journal of informetrics 11.4, pp. 959–975.
    Paper not yet in RePEc: Add citation now
  11. Armstrong, Timothy G, Justin Zobel, William Webber, and Alistair Moffat (2009). “Relative significance is insufficient: Baselines matter too”. In: Proceedings of the SIGIR 2009 Workshop on the Future of IR Evaluation, pp. 25–26.
    Paper not yet in RePEc: Add citation now
  12. “Train large, then compress: Rethinking model size for efficient training and inference of transformers”. In: arXiv preprint arXiv:2002.11794.
    Paper not yet in RePEc: Add citation now
  13. Azoulay, Pierre, Christian Fons-Rosen, and Joshua S Graff Zivin (2019). “Does science advance one funeral at a time?” In: American Economic Review 109.8, pp. 2889–2920.

  14. Azoulay, Pierre, Toby Stuart, and Yanbo Wang (2014). “Matthew: Effect or fable?” In: Management Science 60.1, pp. 92–109.
    Paper not yet in RePEc: Add citation now
  15. Bahri, Yasaman, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma (2021). “Explaining neural scaling laws”. In: arXiv preprint arXiv:2102.06701.
    Paper not yet in RePEc: Add citation now
  16. Baik, Kyung Hwan (1998). “Difference-form contest success functions and effort levels in contests”. In: European Journal of Political Economy 14.4, pp. 685–701.
    Paper not yet in RePEc: Add citation now
  17. Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal (2018). “Reconciling modern machine learning practice and the bias-variance trade-off”. In: arXiv preprint arXiv:1812.11118.
    Paper not yet in RePEc: Add citation now
  18. Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2013). “Representation learning: A review and new perspectives”. In: IEEE transactions on pattern analysis and machine intelligence 35.8, pp. 1798–1828.
    Paper not yet in RePEc: Add citation now
  19. Beraja, Martin, David Y. Yang, and Noam Yuchtman (Aug. 2020). Data-intensive Innovation and the State: Evidence from AI Firms in China. Working Paper 27723. Series: Working Paper Series. National Bureau of Economic Research. doi: 10.3386/w27723. url: https://www.nber.org/papers/w27723 (visited on 01/06/2022).

  20. Berndt, Ernst R. and Laurits R. Christensen (Mar. 1973). “The translog function and the substitution of equipment, structures, and labor in U.S. manufacturing 1929-68”. en. In: Journal of Econometrics 1.1, pp. 81–113. issn: 0304-4076. doi: 10.1016/0304-4076(73)90007-9. url: https://www.sciencedirect. com/science/article/pii/0304407673900079 (visited on 08/10/2022).
    Paper not yet in RePEc: Add citation now
  21. Beyer, Lucas, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord (2020). “Are we done with imagenet?” In: arXiv preprint arXiv:2006.07159.
    Paper not yet in RePEc: Add citation now
  22. Bianchini, Stefano, Moritz Muller, and Pierre Pelletier (Sept. 4, 2020). “Deep Learning in Science”. In: arXiv:2009.01575 [cs, econ]. arXiv: 2009.01575. url: http://arxiv.org/abs/2009.01575 (visited on 02/10/2022).
    Paper not yet in RePEc: Add citation now
  23. Breschi, Stefano, Francesco Lissoni, Gianluca Tarasconi, et al. (2014). Inventor data for research on migration and innovation: a survey and a pilot. Vol. 17. WIPO.

  24. Broderick, Tamara, Ryan Giordano, and Rachael Meager (2020). “An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?” In: arXiv preprint arXiv:2011.14999.
    Paper not yet in RePEc: Add citation now
  25. Brown, Tom et al. (2020). “Language models are few-shot learners”. In: Advances in neural information processing systems 33, pp. 1877–1901.
    Paper not yet in RePEc: Add citation now
  26. Campbell, Marion K and David J Torgerson (1999). “Bootstrapping: estimating confidence intervals for costeffectiveness ratios”. In: Qjm 92.3, pp. 177–182.
    Paper not yet in RePEc: Add citation now
  27. Cockburn, Iain M., Rebecca Henderson, and Scott Stern (June 7, 2019). “4. The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis”. In: 4. The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis. University of Chicago Press, pp. 115–148. isbn: 978-0-226-61347-5. doi: 10.7208/ 9780226613475-006. url: https://www.degruyter.com/document/doi/10.7208/9780226613475006 /html (visited on 01/06/2022).
    Paper not yet in RePEc: Add citation now
  28. Crafts, Nicholas (Sept. 2021). “Artificial intelligence as a general-purpose technology: an historical perspective”.

  29. Czarnitzki, Dirk, Kornelius Kraft, and Susanne Thorwarth (Oct. 2009). “The knowledge production of ’R’ and ’D’”. en. In: Economics Letters 105.1, pp. 141–143. issn: 0165-1765. doi: 10.1016/j.econlet.2009.

  30. Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee, pp. 248–255.
    Paper not yet in RePEc: Add citation now
  31. Elnaggar, Ahmed et al. (2020). “ProtTrans: towards cracking the language of Life’s code through self-supervised deep learning and high performance computing”. In: arXiv preprint arXiv:2007.06225.
    Paper not yet in RePEc: Add citation now
  32. Fisman, Raymond, Jing Shi, Yongxiang Wang, and Rong Xu (2018). “Social ties and favoritism in Chinese science”. In: Journal of Political Economy 126.3, pp. 1134–1171.
    Paper not yet in RePEc: Add citation now
  33. Gibney, Elizabeth (Oct. 18, 2017). “Self-taught AI is best yet at strategy game Go”. In: Nature. Publisher: Nature Publishing Group. issn: 1476-4687. doi: 10.1038/nature.2017.22858. url: https://www. nature.com/articles/nature.2017.22858 (visited on 02/16/2022).
    Paper not yet in RePEc: Add citation now
  34. Goldfarb, Avi, Bledi Taska, and Florenta Teodoridis (2022). “Could Machine Learning be a General Purpose Technology? A Comparison of Emerging Technologies Using Data from Online Job Postings”. In: NBER working paper w29767.

  35. Gong, Gang, Alfred Greiner, and Willi Semmler (2004). “Endogenous growth: Estimating the Romer model for the US and Germany”. In: Oxford Bulletin of Economics and Statistics 66.2, pp. 147–164.

  36. González-Pereira, Borja, Vicente P Guerrero-Bote, and Félix Moya-Anegón (2010). “A new approach to the metric of journals’ scientific prestige: The SJR indicator”. In: Journal of informetrics 4.3, pp. 379–391.
    Paper not yet in RePEc: Add citation now
  37. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
    Paper not yet in RePEc: Add citation now
  38. Grossman, Gene M and Elhanan Helpman (1994). “Endogenous innovation in the theory of growth”. In: Journal of Economic Perspectives 8.1, pp. 23–44.
    Paper not yet in RePEc: Add citation now
  39. Guilkey, David K., C. A. Knox Lovell, and Robin C. Sickles (1983). “A Comparison of the Performance of Three Flexible Functional Forms”. In: International Economic Review 24.3, pp. 591–616. issn: 0020-6598. doi: 10.2307/2648788. url: https://www.jstor.org/stable/2648788 (visited on 08/10/2022).

  40. Hall, Bronwyn H., Zvi Griliches, and Jerry A. Hausman (June 1988). “Patents and R&D: Is There A Lag?” In: International Economic Review.27. Series: Working Paper Series, pp. 265–83. doi: 10.3386/w1454. url: https://www.nber.org/papers/w1454 (visited on 03/29/2022).
    Paper not yet in RePEc: Add citation now
  41. Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman (2009). The elements of statistical learning: data mining, inference, and prediction. Vol. 2. Springer.
    Paper not yet in RePEc: Add citation now
  42. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep residual learning for image recognition ”. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
    Paper not yet in RePEc: Add citation now
  43. Helmers, Christian and Henry G Overman (2017). “My precious! The location and diffusion of scientific research: evidence from the Synchrotron Diamond Light Source”. In: The Economic Journal 127.604, pp. 2006–2040.

  44. Hendrycks, Dan and Kevin Gimpel (2016). “Gaussian error linear units (gelus)”. In: arXiv preprint arXiv:1606.08415.
    Paper not yet in RePEc: Add citation now
  45. Henighan, Tom et al. (2020). “Scaling laws for autoregressive generative modeling”. In: arXiv preprint arXiv:2010.14701.
    Paper not yet in RePEc: Add citation now
  46. Hestness, Joel et al. (2017). “Deep learning scaling is predictable, empirically”. In: arXiv preprint arXiv:1712.00409.
    Paper not yet in RePEc: Add citation now
  47. Hinton, Geoffrey E and Ruslan R Salakhutdinov (2006). “Reducing the dimensionality of data with neural networks”. In: science 313.5786, pp. 504–507.
    Paper not yet in RePEc: Add citation now
  48. Hirsch, Jorge E (2005). “An index to quantify an individual’s scientific research output”. In: Proceedings of the National academy of Sciences 102.46, pp. 16569–16572.
    Paper not yet in RePEc: Add citation now
  49. Hirshleifer, Jack (1989). “Conflict and rent-seeking success functions: Ratio vs. difference models of relative success”. In: Public choice 63.2, pp. 101–112.

  50. Hoffmann, Jordan et al. (2022). “Training Compute-Optimal Large Language Models”. In: arXiv preprint arXiv:2203.15556.
    Paper not yet in RePEc: Add citation now
  51. Hothorn, Torsten, Friedrich Leisch, Achim Zeileis, and Kurt Hornik (2005). “The design and analysis of benchmark experiments”. In: Journal of Computational and Graphical Statistics 14.3, pp. 675–699.
    Paper not yet in RePEc: Add citation now
  52. Howitt, Peter (Aug. 1999). “Steady Endogenous Growth with Population and R & D Inputs Growing”. In: Journal of Political Economy 107.4, pp. 715–730. issn: 0022-3808. doi: 10.1086/250076. url: https: //www.journals.uchicago.edu/doi/abs/10.1086/250076 (visited on 07/02/2022).

  53. Howitt, Peter and Philippe Aghion (June 1, 1998). “Capital Accumulation and Innovation as Complementary Factors in Long-Run Growth”. In: Journal of Economic Growth 3.2, pp. 111–130. issn: 1573-7020. doi: 10.1023/A:1009769717601. url: https://doi.org/10.1023/A:1009769717601 (visited on 02/10/2022).

  54. In: Oxford Review of Economic Policy 37.3, pp. 521–536. issn: 0266-903X. doi: 10.1093/oxrep/grab012. url: https://doi.org/10.1093/oxrep/grab012 (visited on 06/23/2022).
    Paper not yet in RePEc: Add citation now
  55. Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep network training by reducing internal covariate shift”. In: International conference on machine learning. PMLR, pp. 448–456.
    Paper not yet in RePEc: Add citation now
  56. Irwin, Ross, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum (2022). “Chemformer: a pre-trained transformer for computational chemistry”. In: Machine Learning: Science and Technology 3.1, p. 015022.
    Paper not yet in RePEc: Add citation now
  57. Jia, Hao, Stergios Skaperdas, et al. (2012). “Technologies of conflict”. In: The Oxford Handbook of the Economics of Peace and Conflict, pp. 449–472.

  58. Jones, Andy L (2021). “Scaling Scaling Laws with Board Games”. In: arXiv preprint arXiv:2104.03113.
    Paper not yet in RePEc: Add citation now
  59. Jones, Benjamin, EJ Reedy, and Bruce A Weinberg (2014). Age and scientific genius. Tech. rep. National Bureau of Economic Research.

  60. Jones, Charles I. (Aug. 1, 1995). “R & D-Based Models of Economic Growth”. In: Journal of Political Economy 103.4. Publisher: The University of Chicago Press, pp. 759–784. issn: 0022-3808. doi: 10.1086/262002. url: https://www.journals.uchicago.edu/doi/abs/10.1086/262002 (visited on 03/05/2020).
    Paper not yet in RePEc: Add citation now
  61. Jumper, John et al. (2021). “Highly accurate protein structure prediction with AlphaFold”. en. In: Nature 596.7873, pp. 583–589. issn: 1476-4687. doi: 10.1038/s41586-021-03819-2. url: https://www.nature. com/articles/s41586-021-03819-2.
    Paper not yet in RePEc: Add citation now
  62. Kaplan, Jared et al. (2020). Scaling Laws for Neural Language Models. arXiv: 2001.08361 [cs.LG].
    Paper not yet in RePEc: Add citation now
  63. Khan, Asifullah, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi (2020). “A survey of the recent architectures of deep convolutional neural networks”. In: Artificial intelligence review 53.8, pp. 5455–5516.
    Paper not yet in RePEc: Add citation now
  64. Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv preprint arXiv:1412.6980.
    Paper not yet in RePEc: Add citation now
  65. Kortum, Samuel (1992). “Inventions, R&D and industry growth”. English. ISBN: 9798208479254. Ph.D. United States – Connecticut: Yale University. (Visited on 03/29/2022).
    Paper not yet in RePEc: Add citation now
  66. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (May 24, 2017). “ImageNet classification with deep convolutional neural networks”. In: Communications of the ACM 60.6, pp. 84–90. issn: 0001-0782, 15577317. doi: 10.1145/3065386. url: https://dl.acm.org/doi/10.1145/3065386 (visited on 01/06/2022).
    Paper not yet in RePEc: Add citation now
  67. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: nature 521.7553, pp. 436–444.
    Paper not yet in RePEc: Add citation now
  68. Lepikhin, Dmitry, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen (2020). “Gshard: Scaling giant models with conditional computation and automatic sharding”. In: arXiv preprint arXiv:2006.16668.
    Paper not yet in RePEc: Add citation now
  69. Li, Yujia et al. (2022). “Competition-level code generation with alphacode”. In: arXiv preprint arXiv:2203.07814.
    Paper not yet in RePEc: Add citation now
  70. Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick (2014). “Microsoft coco: Common objects in context”. In: European conference on computer vision. Springer, pp. 740–755.
    Paper not yet in RePEc: Add citation now
  71. Martinez-Plumed, Fernando, Pablo Barredo, Sean O Heigeartaigh, and Jose Hernandez-Orallo (2021). “Research community dynamics behind popular AI benchmarks”. In: Nature Machine Intelligence 3.7, pp. 581– 589.
    Paper not yet in RePEc: Add citation now
  72. Melis, Gábor, Chris Dyer, and Phil Blunsom (2017). “On the state of the art of evaluation in neural language models”. In: arXiv preprint arXiv:1707.05589.
    Paper not yet in RePEc: Add citation now
  73. Mirhoseini, Azalia et al. (June 2021). “A graph placement methodology for fast chip design”. en. In: Nature 594.7862. Number: 7862 Publisher: Nature Publishing Group, pp. 207–212. issn: 1476-4687. doi: 10.1038/ s41586-021-03544-w. url: https://www.nature.com/articles/s41586-021-03544-w (visited on 07/20/2022).
    Paper not yet in RePEc: Add citation now
  74. Muller, Benjamin, Peter McIntyre, and Sara Altman (Dec. 2020). Is AI slowing down? Nakkiran, Preetum, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever (2021). “Deep double descent: Where bigger models and more data hurt”. In: Journal of Statistical Mechanics: Theory and Experiment 2021.12, p. 124003.
    Paper not yet in RePEc: Add citation now
  75. National Center for Science and Engineering Statistics (2021). “Higher Education Research and Development: Fiscal Year 2020: Data Tables”. In: Higher Education Research and Development: Fiscal Year 2020: Data
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Chinese Outward Foreign Direct Investment and Innovation in Host Countries: Evidence from Countries Along the Belt and Road. (2023). Fan, Sha ; Sun, Yanyan.
    In: Global Journal of Emerging Market Economies.
    RePEc:sae:emeeco:v:15:y:2023:i:2:p:234-253.

    Full description at Econpapers || Download paper

  2. Economic impacts of AI-augmented R&D. (2023). Thompson, Neil ; Emery-Xu, Nicholas ; Besiroglu, Tamay.
    In: Papers.
    RePEc:arx:papers:2212.08198.

    Full description at Econpapers || Download paper

  3. Growth and innovation in the presence of knowledge and R&D accumulation dynamics. (2022). Verba, Michael A.
    In: Economics of Innovation and New Technology.
    RePEc:taf:ecinnt:v:31:y:2022:i:6:p:485-510.

    Full description at Econpapers || Download paper

  4. The impact of domestic and foreign R&D on TFP in developing countries. (2022). Herzer, Dierk.
    In: World Development.
    RePEc:eee:wdevel:v:151:y:2022:i:c:s0305750x21003697.

    Full description at Econpapers || Download paper

  5. Semi-endogenous growth models with domestic and foreign private and public R&D linked to VECMs with evidence for five countries. (2020). Ziesemer, Thomas.
    In: MERIT Working Papers.
    RePEc:unm:unumer:2020013.

    Full description at Econpapers || Download paper

  6. Semi-endogenous versus Schumpeterian growth models: a critical review of the literature and new evidence. (2020). Herzer, Dierk.
    In: MPRA Paper.
    RePEc:pra:mprapa:98022.

    Full description at Econpapers || Download paper

  7. Semi-endogenous versus Schumpeterian growth models: a critical review of the literature and new evidence. (2020). Herzer, Dierk.
    In: MPRA Paper.
    RePEc:pra:mprapa:100383.

    Full description at Econpapers || Download paper

  8. The Determinants of Total Factor Productivity in the Portuguese Quaternary Sector. (2020). Neves, Pedro ; Matos, Paulo.
    In: GEE Papers.
    RePEc:mde:wpaper:0149.

    Full description at Econpapers || Download paper

  9. How does mortality affect innovative activity in the long run?. (2020). Herzer, Dierk.
    In: World Development.
    RePEc:eee:wdevel:v:125:y:2020:i:c:s0305750x19303365.

    Full description at Econpapers || Download paper

  10. Crecimiento de la productividad: patrones y determinantes en todo el mundo. (2019). Kim, Young Eun ; Loayza, Norman V.
    In: Revista Economía.
    RePEc:pcp:pucrev:y:2019:i:84:p:36-93.

    Full description at Econpapers || Download paper

  11. The decades-long dispute over scale effects in the theory of economic growth. (2019). Bond-Smith, Steven.
    In: Bankwest Curtin Economics Centre Working Paper series.
    RePEc:ozl:bcecwp:wp1902.

    Full description at Econpapers || Download paper

  12. An empirical investigation of country level efficiency and national systems of entrepreneurship using Data Envelopment Analysis (DEA) and the TOBIT model. (2018). Ibne, Munshi Naser ; Tasnim, Nishat.
    In: Journal of Global Entrepreneurship Research.
    RePEc:spr:jglont:v:8:y:2018:i:1:d:10.1186_s40497-018-0138-y.

    Full description at Econpapers || Download paper

  13. Research on the development efficiency of regional high-end talent in China: A complex network approach. (2017). Zhang, Wenbin ; Tian, Lixin ; Wang, Minggang.
    In: PLOS ONE.
    RePEc:plo:pone00:0188816.

    Full description at Econpapers || Download paper

  14. Beyond EU-US Trade Dynamics: TTIP Effects Related to Foreign Direct Investment and Innovation. (2017). Jungmittag, Andre.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp10946.

    Full description at Econpapers || Download paper

  15. The knowledge spillover effects of FDI on the productivity and efficiency of research activities in China. (2017). Zhang, Lin.
    In: China Economic Review.
    RePEc:eee:chieco:v:42:y:2017:i:c:p:1-14.

    Full description at Econpapers || Download paper

  16. Dissemination of Two Faces of Knowledge: Do Liberal-Democracy and Income-Level Matter?. (2017). Hasanzadeh, Samira .
    In: Carleton Economic Papers.
    RePEc:car:carecp:17-09.

    Full description at Econpapers || Download paper

  17. Country level efficiency and national systems of entrepreneurship: a data envelopment analysis approach. (2016). Szerb, László ; Lafuente, Esteban ; acs, zoltan.
    In: The Journal of Technology Transfer.
    RePEc:kap:jtecht:v:41:y:2016:i:6:d:10.1007_s10961-015-9440-9.

    Full description at Econpapers || Download paper

  18. Integrated Macroeconomic Production Function for Open Economies: A New Schumpeterian Solow Model for Globalization. (2016). Welfens, Paul.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp9724.

    Full description at Econpapers || Download paper

  19. Country level efficiency and national systems of entrepreneurship: a data envelopment analysis approach. (2016). Szerb, László ; Lafuente, Esteban ; acs, zoltan.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:68907.

    Full description at Econpapers || Download paper

  20. Migration to the EU: Social and Macroeconomic Effects on Sending Countries. (2016). Kielyte, Julia ; Kancs, d'Artis ; Ciaian, Pavel.
    In: EERI Research Paper Series.
    RePEc:eei:rpaper:eeri_rp_2016_09.

    Full description at Econpapers || Download paper

  21. MACROECONOMIC DETERMINANTS OF TOTAL FACTOR PRODUCTIVITY: NEW GENERATION PANEL DATA ANALYSIS ON OECD COUNTRIES (1996-2015). (2016). Yalcinkaya, Omer ; Siriner, Ismail ; Aydin, Halil Ibrahim .
    In: Annals - Economy Series.
    RePEc:cbu:jrnlec:y:2016:v:6:p:4-16.

    Full description at Econpapers || Download paper

  22. An Alternative Approach towards the Knowledge Production Function on a Regional Level - Applications for the USA and Russia. (2016). Perret, Jens K.
    In: Schumpeter Discussion Papers.
    RePEc:bwu:schdps:sdp16003.

    Full description at Econpapers || Download paper

  23. A Spatial Knowledge Production Function Approach for the Regions of the Russian Federation. (2016). Perret, Jens K.
    In: EIIW Discussion paper.
    RePEc:bwu:eiiwdp:disbei217.

    Full description at Econpapers || Download paper

  24. Beyond EU-US Trade Dynamics: TTIP Effects Related to Foreign Direct Investment and Innovation. (2016). Welfens, Paul ; Jungmittag, Andre.
    In: EIIW Discussion paper.
    RePEc:bwu:eiiwdp:disbei212.

    Full description at Econpapers || Download paper

  25. Schumpeterian Macroeconomic Production Function for Open Economies: A New Endogenous Knowledge and Output Analysis. (2016). Welfens, Paul.
    In: EIIW Discussion paper.
    RePEc:bwu:eiiwdp:disbei211.

    Full description at Econpapers || Download paper

  26. Growth and innovation in the presence of knowledge and R&D accumulation dynamics. (2015). Verba, Michael.
    In: MERIT Working Papers.
    RePEc:unm:unumer:2015054.

    Full description at Econpapers || Download paper

  27. Directed Technological Change and Energy Efficiency Improvements. (2015). Witajewski-Baltvilks, Jan ; Verdolini, Elena ; Tavoni, Massimo.
    In: Working Papers.
    RePEc:fem:femwpa:2015.78.

    Full description at Econpapers || Download paper

  28. Migration of skilled workers and innovation: A European Perspective. (2015). Verdolini, Elena ; Cattaneo, Cristina ; Bosetti, Valentina.
    In: Journal of International Economics.
    RePEc:eee:inecon:v:96:y:2015:i:2:p:311-322.

    Full description at Econpapers || Download paper

  29. The physical limits to economic growth by R&D funded innovation. (2015). Beaudreau, Bernard C. ; Lightfoot, Douglas H..
    In: Energy.
    RePEc:eee:energy:v:84:y:2015:i:c:p:45-52.

    Full description at Econpapers || Download paper

  30. The impact of knowledge spillovers on regional total factor productivity. New empirical evidence from selected European countries. (2014). Puskarova, Paula ; Piribauer, Philipp.
    In: ERSA conference papers.
    RePEc:wiw:wiwrsa:ersa14p1813.

    Full description at Econpapers || Download paper

  31. Semi-Endogenous R&D Growth Model with Negative Population Growth. (2014). Sasaki, Hiroaki ; Hoshida, Keisuke .
    In: MPRA Paper.
    RePEc:pra:mprapa:53833.

    Full description at Econpapers || Download paper

  32. The Continued Search for the Solow Residual: The Role of National Entrepreneurial Ecosystem. (2014). Szerb, László ; Mickiewicz, Tomasz ; acs, zoltan ; Estrin, Saul.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp8652.

    Full description at Econpapers || Download paper

  33. Effects of Knowledge Spillovers on Knowledge Production and Productivity Growth in Korean Manufacturing Firms. (2014). Oh, Keun-Yeob ; Maskus, Keith ; Kim, Tae Gi .
    In: Asian Economic Journal.
    RePEc:bla:asiaec:v:28:y:2014:i:1:p:63-79.

    Full description at Econpapers || Download paper

  34. The Geography of Patenting In India: Patterns and Determinants. (2013). Pradhan, Jaya Prakash.
    In: MPRA Paper.
    RePEc:pra:mprapa:50595.

    Full description at Econpapers || Download paper

  35. The Determinants of TFP Growth in Middle Income Economies in ASEAN: Implication of Financial Crises. (2012). pham, dai ; Van Dai, Pham ; Delpachitra, Sarath.
    In: International Journal of Business and Economics.
    RePEc:ijb:journl:v:11:y:2012:i:1:p:63-88.

    Full description at Econpapers || Download paper

  36. Migration, Cultural Diversity and Innovation: A European Perspective. (2012). Verdolini, Elena ; Cattaneo, Cristina ; Bosetti, Valentina.
    In: Working Papers.
    RePEc:igi:igierp:469.

    Full description at Econpapers || Download paper

  37. Migration, Cultural Diversity and Innovation: A European Perspective. (2012). Verdolini, Elena ; Cattaneo, Cristina ; Bosetti, Valentina.
    In: Working Papers.
    RePEc:fem:femwpa:2012.69.

    Full description at Econpapers || Download paper

  38. The impact of regional absorptive capacity on spatial knowledge spillovers. (2011). Nijkamp, Peter ; Caragliu, Andrea.
    In: Post-Print.
    RePEc:hal:journl:hal-00673204.

    Full description at Econpapers || Download paper

  39. ECONOMETRICS FOR GRUMBLERS: A NEW LOOK AT THE LITERATURE ON CROSS‐COUNTRY GROWTH EMPIRICS. (2011). Eberhardt, Markus ; Teal, Francis .
    In: Journal of Economic Surveys.
    RePEc:bla:jecsur:v:25:y:2011:i:1:p:109-155.

    Full description at Econpapers || Download paper

  40. Do spillovers matter when estimating private returns to R&D?. (2010). Helmers, Christian ; Eberhardt, Markus ; Strauss, Hubert .
    In: Economic and Financial Reports.
    RePEc:ris:eibefr:2010_001.

    Full description at Econpapers || Download paper

  41. CAN SECOND-GENERATION ENDOGENOUS GROWTH MODELS EXPLAIN THE PRODUCTIVITY TRENDS AND KNOWLEDGE PRODUCTION IN THE ASIAN MIRACLE ECONOMIES?. (2010). Madsen, Jakob ; Ang, James ; JakobB. Madsen, .
    In: CAMA Working Papers.
    RePEc:een:camaaa:2010-05.

    Full description at Econpapers || Download paper

  42. Can Second-Generation Endogenous Growth Models Explain The Productivity Trends and Knowledge Production In the Asian Miracle Economies?. (2009). Madsen, Jakob ; Ang, James.
    In: MPRA Paper.
    RePEc:pra:mprapa:17543.

    Full description at Econpapers || Download paper

  43. Econometrics for Grumblers: A New Look at the Literature on Cross-Country Growth Empirics. (2009). Teal, Francis ; Eberhardt, Markus.
    In: MPRA Paper.
    RePEc:pra:mprapa:15813.

    Full description at Econpapers || Download paper

  44. Econometrics for Grumblers: A New Look at the Literature on Cross-Country Growth Empirics. (2009). Teal, Francis ; Eberhardt, Markus.
    In: Economics Series Working Papers.
    RePEc:oxf:wpaper:csae-wps/2009-07.

    Full description at Econpapers || Download paper

  45. The Impact of Public Capital, Human Capital, and Knowledge on Aggregate Output. (2008). Joutz, Fred ; Abdih, Yasser.
    In: IMF Working Papers.
    RePEc:imf:imfwpa:2008/218.

    Full description at Econpapers || Download paper

  46. Innovationen, Beschäftigungsstruktur und Wachstum der totalen Faktorproduktivität. (2007). Jungmittag, Andre.
    In: Review of Regional Research: Jahrbuch für Regionalwissenschaft.
    RePEc:spr:jahrfr:v:27:y:2007:i:2:p:143-170.

    Full description at Econpapers || Download paper

  47. Measuring industrial knowledge stocks with patents and papers. (2007). Han, Yoo-Jin .
    In: Journal of Informetrics.
    RePEc:eee:infome:v:1:y:2007:i:4:p:269-276.

    Full description at Econpapers || Download paper

  48. An R&D-based model of multi-sector growth. (2006). Samaniego, Roberto ; Ngai, L. Rachel.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:3527.

    Full description at Econpapers || Download paper

  49. An R&D-Based Model of Multi-Sector Growth. (2006). Samaniego, Roberto ; Ngai, L. Rachel.
    In: CEP Discussion Papers.
    RePEc:cep:cepdps:dp0762.

    Full description at Econpapers || Download paper

  50. Investment-Specific Technical Change and the Production of Ideas. (2005). Samaniego, Roberto.
    In: Computing in Economics and Finance 2005.
    RePEc:sce:scecf5:291.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-24 05:19:33 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.