- â (1993). âEquilibrium R&D and the patentâR&D ratio: Us evidenceâ. In: The American Economic Review 83.2, pp. 450â457.
Paper not yet in RePEc: Add citation now
Abdih, Yasser and Frederick Joutz (2006). âRelating the knowledge production function to total factor productivity: an endogenous growth puzzleâ. In: IMF Staff Papers 53.2, pp. 242â271.
- Abis, Simona and Laura Veldkamp (2020). âThe Changing Economics of Knowledge Productionâ. en. In: SSRN Electronic Journal. issn: 1556-5068. doi: 10.2139/ssrn.3570130. url: https://www.ssrn.com/ abstract=3570130.
Paper not yet in RePEc: Add citation now
- Aghion, Philippe, Benjamin F Jones, and Charles I. Jones (May 2019). âArtificial Intelligence and Economic Growthâ. In: The Economics of Artificial Intelligence: An Agenda. University of Chicago Press, pp. 237â 282.
Paper not yet in RePEc: Add citation now
- Agrawal, Ajay (May 2022). Introduction by Ajay Agrawal. url: https://www.economicsofai.com/nberconference -toronto-2017.
Paper not yet in RePEc: Add citation now
- Agrawal, Ajay, John McHale, and Alexander Oettl (May 2019). âFinding Needles in Haystacks: Artificial Intelligence and Recombinant Growthâ. In: The Economics of Artificial Intelligence: An Agenda. University of Chicago Press, pp. 149â174.
Paper not yet in RePEc: Add citation now
- Agrawal, Ajay, Joshua Gans, and Avi Goldfarb (2018). Prediction machines: the simple economics of artificial intelligence. Harvard Business Press.
Paper not yet in RePEc: Add citation now
- Ahmed, Nur and Muntasir Wahed (2020). âThe de-democratization of ai: Deep learning and the compute divide in artificial intelligence researchâ. In: arXiv preprint arXiv:2010.15581.
Paper not yet in RePEc: Add citation now
- Alom, Md Zahangir, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K Asari (2018). âThe history began from AlexNet: A comprehensive survey on deep learning approachesâ. In: arXiv preprint arXiv:1803.01164.
Paper not yet in RePEc: Add citation now
- Aria, Massimo and Corrado Cuccurullo (2017). âbibliometrix: An R-tool for comprehensive science mapping analysisâ. In: Journal of informetrics 11.4, pp. 959â975.
Paper not yet in RePEc: Add citation now
- Armstrong, Timothy G, Justin Zobel, William Webber, and Alistair Moffat (2009). âRelative significance is insufficient: Baselines matter tooâ. In: Proceedings of the SIGIR 2009 Workshop on the Future of IR Evaluation, pp. 25â26.
Paper not yet in RePEc: Add citation now
- âTrain large, then compress: Rethinking model size for efficient training and inference of transformersâ. In: arXiv preprint arXiv:2002.11794.
Paper not yet in RePEc: Add citation now
Azoulay, Pierre, Christian Fons-Rosen, and Joshua S Graff Zivin (2019). âDoes science advance one funeral at a time?â In: American Economic Review 109.8, pp. 2889â2920.
- Azoulay, Pierre, Toby Stuart, and Yanbo Wang (2014). âMatthew: Effect or fable?â In: Management Science 60.1, pp. 92â109.
Paper not yet in RePEc: Add citation now
- Bahri, Yasaman, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma (2021). âExplaining neural scaling lawsâ. In: arXiv preprint arXiv:2102.06701.
Paper not yet in RePEc: Add citation now
- Baik, Kyung Hwan (1998). âDifference-form contest success functions and effort levels in contestsâ. In: European Journal of Political Economy 14.4, pp. 685â701.
Paper not yet in RePEc: Add citation now
- Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal (2018). âReconciling modern machine learning practice and the bias-variance trade-offâ. In: arXiv preprint arXiv:1812.11118.
Paper not yet in RePEc: Add citation now
- Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2013). âRepresentation learning: A review and new perspectivesâ. In: IEEE transactions on pattern analysis and machine intelligence 35.8, pp. 1798â1828.
Paper not yet in RePEc: Add citation now
Beraja, Martin, David Y. Yang, and Noam Yuchtman (Aug. 2020). Data-intensive Innovation and the State: Evidence from AI Firms in China. Working Paper 27723. Series: Working Paper Series. National Bureau of Economic Research. doi: 10.3386/w27723. url: https://www.nber.org/papers/w27723 (visited on 01/06/2022).
- Berndt, Ernst R. and Laurits R. Christensen (Mar. 1973). âThe translog function and the substitution of equipment, structures, and labor in U.S. manufacturing 1929-68â. en. In: Journal of Econometrics 1.1, pp. 81â113. issn: 0304-4076. doi: 10.1016/0304-4076(73)90007-9. url: https://www.sciencedirect. com/science/article/pii/0304407673900079 (visited on 08/10/2022).
Paper not yet in RePEc: Add citation now
- Beyer, Lucas, Olivier J HeÌnaff, Alexander Kolesnikov, Xiaohua Zhai, and AaÌron van den Oord (2020). âAre we done with imagenet?â In: arXiv preprint arXiv:2006.07159.
Paper not yet in RePEc: Add citation now
- Bianchini, Stefano, Moritz Muller, and Pierre Pelletier (Sept. 4, 2020). âDeep Learning in Scienceâ. In: arXiv:2009.01575 [cs, econ]. arXiv: 2009.01575. url: http://arxiv.org/abs/2009.01575 (visited on 02/10/2022).
Paper not yet in RePEc: Add citation now
Breschi, Stefano, Francesco Lissoni, Gianluca Tarasconi, et al. (2014). Inventor data for research on migration and innovation: a survey and a pilot. Vol. 17. WIPO.
- Broderick, Tamara, Ryan Giordano, and Rachael Meager (2020). âAn Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?â In: arXiv preprint arXiv:2011.14999.
Paper not yet in RePEc: Add citation now
- Brown, Tom et al. (2020). âLanguage models are few-shot learnersâ. In: Advances in neural information processing systems 33, pp. 1877â1901.
Paper not yet in RePEc: Add citation now
- Campbell, Marion K and David J Torgerson (1999). âBootstrapping: estimating confidence intervals for costeffectiveness ratiosâ. In: Qjm 92.3, pp. 177â182.
Paper not yet in RePEc: Add citation now
- Cockburn, Iain M., Rebecca Henderson, and Scott Stern (June 7, 2019). â4. The Impact of Artificial Intelligence on Innovation: An Exploratory Analysisâ. In: 4. The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis. University of Chicago Press, pp. 115â148. isbn: 978-0-226-61347-5. doi: 10.7208/ 9780226613475-006. url: https://www.degruyter.com/document/doi/10.7208/9780226613475006 /html (visited on 01/06/2022).
Paper not yet in RePEc: Add citation now
Crafts, Nicholas (Sept. 2021). âArtificial intelligence as a general-purpose technology: an historical perspectiveâ.
Czarnitzki, Dirk, Kornelius Kraft, and Susanne Thorwarth (Oct. 2009). âThe knowledge production of âRâ and âDââ. en. In: Economics Letters 105.1, pp. 141â143. issn: 0165-1765. doi: 10.1016/j.econlet.2009.
- Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). âImagenet: A large-scale hierarchical image databaseâ. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee, pp. 248â255.
Paper not yet in RePEc: Add citation now
- Elnaggar, Ahmed et al. (2020). âProtTrans: towards cracking the language of Lifeâs code through self-supervised deep learning and high performance computingâ. In: arXiv preprint arXiv:2007.06225.
Paper not yet in RePEc: Add citation now
- Fisman, Raymond, Jing Shi, Yongxiang Wang, and Rong Xu (2018). âSocial ties and favoritism in Chinese scienceâ. In: Journal of Political Economy 126.3, pp. 1134â1171.
Paper not yet in RePEc: Add citation now
- Gibney, Elizabeth (Oct. 18, 2017). âSelf-taught AI is best yet at strategy game Goâ. In: Nature. Publisher: Nature Publishing Group. issn: 1476-4687. doi: 10.1038/nature.2017.22858. url: https://www. nature.com/articles/nature.2017.22858 (visited on 02/16/2022).
Paper not yet in RePEc: Add citation now
Goldfarb, Avi, Bledi Taska, and Florenta Teodoridis (2022). âCould Machine Learning be a General Purpose Technology? A Comparison of Emerging Technologies Using Data from Online Job Postingsâ. In: NBER working paper w29767.
Gong, Gang, Alfred Greiner, and Willi Semmler (2004). âEndogenous growth: Estimating the Romer model for the US and Germanyâ. In: Oxford Bulletin of Economics and Statistics 66.2, pp. 147â164.
- GonzaÌlez-Pereira, Borja, Vicente P Guerrero-Bote, and FeÌlix Moya-AnegoÌn (2010). âA new approach to the metric of journalsâ scientific prestige: The SJR indicatorâ. In: Journal of informetrics 4.3, pp. 379â391.
Paper not yet in RePEc: Add citation now
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
Paper not yet in RePEc: Add citation now
- Grossman, Gene M and Elhanan Helpman (1994). âEndogenous innovation in the theory of growthâ. In: Journal of Economic Perspectives 8.1, pp. 23â44.
Paper not yet in RePEc: Add citation now
Guilkey, David K., C. A. Knox Lovell, and Robin C. Sickles (1983). âA Comparison of the Performance of Three Flexible Functional Formsâ. In: International Economic Review 24.3, pp. 591â616. issn: 0020-6598. doi: 10.2307/2648788. url: https://www.jstor.org/stable/2648788 (visited on 08/10/2022).
- Hall, Bronwyn H., Zvi Griliches, and Jerry A. Hausman (June 1988). âPatents and R&D: Is There A Lag?â In: International Economic Review.27. Series: Working Paper Series, pp. 265â83. doi: 10.3386/w1454. url: https://www.nber.org/papers/w1454 (visited on 03/29/2022).
Paper not yet in RePEc: Add citation now
- Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman (2009). The elements of statistical learning: data mining, inference, and prediction. Vol. 2. Springer.
Paper not yet in RePEc: Add citation now
- He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). âDeep residual learning for image recognition â. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770â778.
Paper not yet in RePEc: Add citation now
Helmers, Christian and Henry G Overman (2017). âMy precious! The location and diffusion of scientific research: evidence from the Synchrotron Diamond Light Sourceâ. In: The Economic Journal 127.604, pp. 2006â2040.
- Hendrycks, Dan and Kevin Gimpel (2016). âGaussian error linear units (gelus)â. In: arXiv preprint arXiv:1606.08415.
Paper not yet in RePEc: Add citation now
- Henighan, Tom et al. (2020). âScaling laws for autoregressive generative modelingâ. In: arXiv preprint arXiv:2010.14701.
Paper not yet in RePEc: Add citation now
- Hestness, Joel et al. (2017). âDeep learning scaling is predictable, empiricallyâ. In: arXiv preprint arXiv:1712.00409.
Paper not yet in RePEc: Add citation now
- Hinton, Geoffrey E and Ruslan R Salakhutdinov (2006). âReducing the dimensionality of data with neural networksâ. In: science 313.5786, pp. 504â507.
Paper not yet in RePEc: Add citation now
- Hirsch, Jorge E (2005). âAn index to quantify an individualâs scientific research outputâ. In: Proceedings of the National academy of Sciences 102.46, pp. 16569â16572.
Paper not yet in RePEc: Add citation now
Hirshleifer, Jack (1989). âConflict and rent-seeking success functions: Ratio vs. difference models of relative successâ. In: Public choice 63.2, pp. 101â112.
- Hoffmann, Jordan et al. (2022). âTraining Compute-Optimal Large Language Modelsâ. In: arXiv preprint arXiv:2203.15556.
Paper not yet in RePEc: Add citation now
- Hothorn, Torsten, Friedrich Leisch, Achim Zeileis, and Kurt Hornik (2005). âThe design and analysis of benchmark experimentsâ. In: Journal of Computational and Graphical Statistics 14.3, pp. 675â699.
Paper not yet in RePEc: Add citation now
Howitt, Peter (Aug. 1999). âSteady Endogenous Growth with Population and R & D Inputs Growingâ. In: Journal of Political Economy 107.4, pp. 715â730. issn: 0022-3808. doi: 10.1086/250076. url: https: //www.journals.uchicago.edu/doi/abs/10.1086/250076 (visited on 07/02/2022).
Howitt, Peter and Philippe Aghion (June 1, 1998). âCapital Accumulation and Innovation as Complementary Factors in Long-Run Growthâ. In: Journal of Economic Growth 3.2, pp. 111â130. issn: 1573-7020. doi: 10.1023/A:1009769717601. url: https://doi.org/10.1023/A:1009769717601 (visited on 02/10/2022).
- In: Oxford Review of Economic Policy 37.3, pp. 521â536. issn: 0266-903X. doi: 10.1093/oxrep/grab012. url: https://doi.org/10.1093/oxrep/grab012 (visited on 06/23/2022).
Paper not yet in RePEc: Add citation now
- Ioffe, Sergey and Christian Szegedy (2015). âBatch normalization: Accelerating deep network training by reducing internal covariate shiftâ. In: International conference on machine learning. PMLR, pp. 448â456.
Paper not yet in RePEc: Add citation now
- Irwin, Ross, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum (2022). âChemformer: a pre-trained transformer for computational chemistryâ. In: Machine Learning: Science and Technology 3.1, p. 015022.
Paper not yet in RePEc: Add citation now
Jia, Hao, Stergios Skaperdas, et al. (2012). âTechnologies of conflictâ. In: The Oxford Handbook of the Economics of Peace and Conflict, pp. 449â472.
- Jones, Andy L (2021). âScaling Scaling Laws with Board Gamesâ. In: arXiv preprint arXiv:2104.03113.
Paper not yet in RePEc: Add citation now
Jones, Benjamin, EJ Reedy, and Bruce A Weinberg (2014). Age and scientific genius. Tech. rep. National Bureau of Economic Research.
- Jones, Charles I. (Aug. 1, 1995). âR & D-Based Models of Economic Growthâ. In: Journal of Political Economy 103.4. Publisher: The University of Chicago Press, pp. 759â784. issn: 0022-3808. doi: 10.1086/262002. url: https://www.journals.uchicago.edu/doi/abs/10.1086/262002 (visited on 03/05/2020).
Paper not yet in RePEc: Add citation now
- Jumper, John et al. (2021). âHighly accurate protein structure prediction with AlphaFoldâ. en. In: Nature 596.7873, pp. 583â589. issn: 1476-4687. doi: 10.1038/s41586-021-03819-2. url: https://www.nature. com/articles/s41586-021-03819-2.
Paper not yet in RePEc: Add citation now
- Kaplan, Jared et al. (2020). Scaling Laws for Neural Language Models. arXiv: 2001.08361 [cs.LG].
Paper not yet in RePEc: Add citation now
- Khan, Asifullah, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi (2020). âA survey of the recent architectures of deep convolutional neural networksâ. In: Artificial intelligence review 53.8, pp. 5455â5516.
Paper not yet in RePEc: Add citation now
- Kingma, Diederik P and Jimmy Ba (2014). âAdam: A method for stochastic optimizationâ. In: arXiv preprint arXiv:1412.6980.
Paper not yet in RePEc: Add citation now
- Kortum, Samuel (1992). âInventions, R&D and industry growthâ. English. ISBN: 9798208479254. Ph.D. United States â Connecticut: Yale University. (Visited on 03/29/2022).
Paper not yet in RePEc: Add citation now
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (May 24, 2017). âImageNet classification with deep convolutional neural networksâ. In: Communications of the ACM 60.6, pp. 84â90. issn: 0001-0782, 15577317. doi: 10.1145/3065386. url: https://dl.acm.org/doi/10.1145/3065386 (visited on 01/06/2022).
Paper not yet in RePEc: Add citation now
- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). âDeep learningâ. In: nature 521.7553, pp. 436â444.
Paper not yet in RePEc: Add citation now
- Lepikhin, Dmitry, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen (2020). âGshard: Scaling giant models with conditional computation and automatic shardingâ. In: arXiv preprint arXiv:2006.16668.
Paper not yet in RePEc: Add citation now
- Li, Yujia et al. (2022). âCompetition-level code generation with alphacodeâ. In: arXiv preprint arXiv:2203.07814.
Paper not yet in RePEc: Add citation now
- Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr DollaÌr, and C Lawrence Zitnick (2014). âMicrosoft coco: Common objects in contextâ. In: European conference on computer vision. Springer, pp. 740â755.
Paper not yet in RePEc: Add citation now
- Martinez-Plumed, Fernando, Pablo Barredo, Sean O Heigeartaigh, and Jose Hernandez-Orallo (2021). âResearch community dynamics behind popular AI benchmarksâ. In: Nature Machine Intelligence 3.7, pp. 581â 589.
Paper not yet in RePEc: Add citation now
- Melis, GaÌbor, Chris Dyer, and Phil Blunsom (2017). âOn the state of the art of evaluation in neural language modelsâ. In: arXiv preprint arXiv:1707.05589.
Paper not yet in RePEc: Add citation now
- Mirhoseini, Azalia et al. (June 2021). âA graph placement methodology for fast chip designâ. en. In: Nature 594.7862. Number: 7862 Publisher: Nature Publishing Group, pp. 207â212. issn: 1476-4687. doi: 10.1038/ s41586-021-03544-w. url: https://www.nature.com/articles/s41586-021-03544-w (visited on 07/20/2022).
Paper not yet in RePEc: Add citation now
- Muller, Benjamin, Peter McIntyre, and Sara Altman (Dec. 2020). Is AI slowing down? Nakkiran, Preetum, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever (2021). âDeep double descent: Where bigger models and more data hurtâ. In: Journal of Statistical Mechanics: Theory and Experiment 2021.12, p. 124003.
Paper not yet in RePEc: Add citation now
- National Center for Science and Engineering Statistics (2021). âHigher Education Research and Development: Fiscal Year 2020: Data Tablesâ. In: Higher Education Research and Development: Fiscal Year 2020: Data
Paper not yet in RePEc: Add citation now