Aas, K. and I. H. Haff (2006). The generalized hyperbolic skew student’s tdistribution. Journal of Financial Econometrics 4(2), 275–309.
Abanto-Valle, C. A., H. S. Migon, and H. F. Lopes (2010). Bayesian modeling of ï¬nancial returns: A relationship between volatility and trading volume. Applied Stochastic Models in Business and Industry 26(2), 172–193.
- Abanto-Valle, C. A., V. H. Lachos, and D. Dey (2012). Stock return volatility, heavy tails, skewness and trading volume: A bayesian approach. Submitted.
Paper not yet in RePEc: Add citation now
- Abanto-Valle, C., V. Lachos, and D. K. Dey (2013). Bayesian estimation of a skew-student-t stochastic volatility model. Methodology and Computing in Applied Probability, 1–18.
Paper not yet in RePEc: Add citation now
- Abramowitz, M. and I. A. Stegun (1972). Handbook of Mathematical Functions. New York, USA: Dover Publications.
Paper not yet in RePEc: Add citation now
Alizadeh, S., M. W. Brandt, and F. X. Diebold (2002). Range-based estimation of stochastic volatility models. The Journal of Finance 57(3), 1047–1091.
Andersen, T. G. (1996). Return volatility and trading volume: An information flow interpretation of stochastic volatility. The Journal of Finance 51(1), 169–204.
Andersen, T. G. and L. Benzoni (2008). Stochastic volatility. Chapter prepared for the Encyclopedia of Complexity and System Science (Springer). Available at SSRN: http://ssrn.com/abstract=1076672 or http://dx.doi.org/10.2139/ssrn.1076672.
Andersen, T. G. and T. Bollerslev (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review 39(4), 885–905.
Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59(3), 817–858.
Asai, M. (2008). Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models. Journal of Empirical Finance 15(2), 332–341.
- Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 353(1674), 401–419.
Paper not yet in RePEc: Add citation now
- Barndorff-Nielsen, O. E. and N. Shephard (2001a). Non-gaussian ornsteinuhlenbeck -based models and some of their uses in ï¬nancial economics (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(2), 167–241.
Paper not yet in RePEc: Add citation now
- Barndorff-Nielsen, O. E. and N. Shephard (2001b). Normal modiï¬ed stable processes. Available on IDEAS RePEc.
Paper not yet in RePEc: Add citation now
- Barndorff-Nielsen, O. E. and P. Blæsid (1981). Hyperbolic distributions and ramniï¬cations: Contributions to theory and application. Statistical Distributions in Scientiï¬c Work 4, 19–44.
Paper not yet in RePEc: Add citation now
Bauwens, L., P. Giot, J. Grammig, and D. Veredas (2004). A comparison of ï¬nancial duration models via density forecasts. International Journal of Forecasting 20(4), 589–609.
- Black, F. (1976). Studies in stock price volatility changes. In Proceedings of the 1976 Meeting of the Business and Economic Statistics Section, pp. 177–181. American Statistical Association.
Paper not yet in RePEc: Add citation now
Bos, C. S. (2011). Relating stochastic volatility estimation methods. Discussion Paper 11-049/4 Tinbergen Institute and VU University Amsterdam.
Bouchaud, J.-P. and M. Potters (2009). Theory of Financial Risk and Derivative Pricing. Cambridge, UK: Cambridge University Press.
Brandt, M. W. and C. S. Jones (2005). Bayesian range-based estimation of stochastic volatility models. Finance Research Letters 2(4), 201–209.
Broto, C. and E. Ruiz (2004). Estimation methods for stochastic volatility models: a survey. Journal of Economic Surveys 18(5), 613–649.
Bulla, J. (2011). Hidden markov models with t components. increased persistence and other aspects. Quantitative Finance 11(3), 459–475.
Cappuccio, N., D. Lubian, and D. Raggi (2004). Mcmc bayesian estimation of a skew-ged stochastic volatility model. Studies in Nonlinear Dynamics & Econometrics 8(2). Article 6.
Carvalho, C. M. and H. F. Lopes (2007). Simulation-based sequential analysis of markov switching stochastic volatility models. Computational Statistics & Data Analysis 51(9), 4526–4542.
- Chan, J. C.-C. and I. Jeliazkov (2009). Mcmc estimation of restricted covariance matrices. Journal of Computational and Graphical Statistics 18(2), 457–480.
Paper not yet in RePEc: Add citation now
Chernov, M., A. R. Gallant, E. Ghysels, and G. Tauchen (2003). Alternative models for stock price dynamics. Journal of Econometrics 116(1-2), 225– 257. Frontiers of ï¬nancial econometrics and ï¬nancial engineering.
Chib, S. (1996). Calculating posterior distributions and modal estimates in markov mixture models. Journal of Econometrics 75(1), 79–97.
- Chib, S. and E. Greenberg (1995). Understanding the metropolis-hastings algorithm. Journal of the American Statistical Association 49(4), 327–335.
Paper not yet in RePEc: Add citation now
Chib, S., F. Nardari, and N. Shephard (2002). Markov chain monte carlo methods for stochastic volatility models. Journal of Econometrics 108(2), 281–316.
Christie, A. A. (1982). The stochastic behavior of common stock variances : Value, leverage and interest rate effects. Journal of Financial Economics 10(4), 407–432.
Clark, P. K. (1973). A subordinated stochastic process model with ï¬nite variance for speculative prices. Econometrica 41(1), 135–155.
- de Jong, P. and N. Shephard (1995). The simulation smoother for time series models. Biometrika 82(2), 339–350.
Paper not yet in RePEc: Add citation now
Diebold, F. X., T. A. Gunther, and A. S. Tay (1998). Evaluating density forecasts with applications to ï¬nancial risk management. International Economic Review 39(4), 863–883.
- Douc, R., O. Cappe, and E. Moulines (2005). Comparison of resampling schemes for particle ï¬ltering. In In 4th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 64–69.
Paper not yet in RePEc: Add citation now
- Doucet, A., N. de Freitas, and N. Gordon (2001). Sequential Monte Carlo Methods in Practice. New York, USA: Springer.
Paper not yet in RePEc: Add citation now
Durbin, J. and S. J. Koopman (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika 89(3), 603–615.
- Durbin, J. and S. J. Koopman (2008). Time Series Analysis by State Space Methods. Oxford, UK: Oxford University Press.
Paper not yet in RePEc: Add citation now
Durham, G. B. (2006). Monte carlo methods for estimating, smoothing, and ï¬ltering one- and two-factor stochastic volatility models. Journal of Econometrics 133(1), 273–305.
Fruhwirth-Schnatter, S. (2001). Markov chain monte carlo estimation of classical and dynamic switching and mixture models. Journal of the American Statistical Association 96(453), 194–209.
- Fruhwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. New York, USA: Springer.
Paper not yet in RePEc: Add citation now
- Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics, Volume 4, pp. 169– 188. New York, USA: Oxford University Press.
Paper not yet in RePEc: Add citation now
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57(2), 357–384.
Hansen, P. R. and A. Lunde (2006). Realized variance and market microstructure noise. Journal of Business & Economic Statistics 24(2), 127–161.
- Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge, UK: Cambridge University Press.
Paper not yet in RePEc: Add citation now
Harvey, A. C., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. The Review of Economic Studies 61(2), 247–264.
- Hol, J. D., T. B. Schon, and F. Gustafsson (2006). On resampling algorithms for particle ï¬lters. In Nonlinear Statistical Signal Processing Workshop, Cambridge, UK. IEEE.
Paper not yet in RePEc: Add citation now
- Hu, W. (2009). Calibration of Multivariate Generalized Hyperbolic Distributions. Saarbrucken, GER: VDM Publishing.
Paper not yet in RePEc: Add citation now
- Jacquier, E. and S. Miller (2012). The information content of realized volatility. Working paper.
Paper not yet in RePEc: Add citation now
Jacquier, E., N. G. Polson, and P. E. Rossi (1994). Bayesian analysis of stochastic volatility models. Journal of Business & Economic Statistics 12(4), 371–389.
Jacquier, E., N. G. Polson, and P. E. Rossi (2004). Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Journal of Econometrics 122(1), 185–212.
Kim, C.-J. and C. R. Nelson (1998). Business cycle turning points, a new coincident index, and tests of duration dependence based on a dynamic factor model with regime switching. The Review of Economics and Statistics 80(2), 188–201.
- Kim, C.-J. and C. R. Nelson (1999). State-Space Models with Regime Switching. Cambridge, USA: MIT Press.
Paper not yet in RePEc: Add citation now
Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: Likelihood inference and comparison with arch models. The Review of Economic Studies 65(3), 361–393.
- Koopman, S. J. (1993). Disturbance smoother for state space models. Biometrika 80(1), 117–126.
Paper not yet in RePEc: Add citation now
Koopman, S. J., B. Jungbacker, and E. Hol (2005). Forecasting daily variability of the s&p 100 stock index using historical, realised and implied volatility measurements. Journal of Empirical Finance 12(3), 445–475.
Liesenfeld, R. and J.-F. Richard (2003). Univariate and multivariate stochastic volatility models: estimation and diagnostics. Journal of Empirical Finance 10(4), 505–531.
Lo, A. W. and M. T. Muller (Second Quarter 2010). Warning: Physics envy may be hazardous to your wealth! Journal of Investment Management (JOIM) 8(2). Available at SSRN: http://ssrn.com/abstract=1639085.
Mahieu, R. and R. Bauer (1998). A bayesian analysis of stock return volatility and trading volume. Applied Financial Economics 8(6), 671–687.
McAleer, M. and M. C. Medeiros (2008). Realized volatility: A review. Econometric Reviews 27(1-3), 10–45.
- Molina, G., C.-H. Han, and J.-P. Fouque (2010). Mcmc estimation of multiscale stochastic volatility models. In C.-F. Lee and J. Lee (Eds.), Handbook of Quantitative Finance and Risk Management, Volume 5, pp. 1109–1120. New York, USA: Springer.
Paper not yet in RePEc: Add citation now
Nakajima, J. and Y. Omori (2009). Leverage, heavy-tails and correlated jumps in stochastic volatility models. Computational Statistics & Data Analysis 53(6), 2335–2353. The Fourth Special Issue on Computational Econometrics.
Nakajima, J. and Y. Omori (2012). Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew student’s t-distribution. Computational Statistics & Data Analysis 56(11), 3690–3704. 1st issue of the Annals of Computational and Financial Econometrics. Sixth Special Issue on Computational Econometrics.
Omori, Y. and T. Watanabe (2007). Block sampler and posterior mode estimation for a nonlinear and non-gaussian state-space model with correlated errors.
Omori, Y. and T. Watanabe (2008). Block sampler and posterior mode estimation for asymmetric stochastic volatility models. Computational Statistics & Data Analysis 52(6), 2892–2910.
Omori, Y., S. Chib, N. Shephard, and J. Nakajima (2007). Stochastic volatility with leverage: Fast and efficient likelihood inference. Journal of Econometrics 140(2), 425–449.
Pemstein, D., K. M. Quinn, and A. D. Martin (2011). The scythe statistical library: An open source c++ library for statistical computation. Journal of Statistical Software 42(12), 1–26.
- Pitt, M. K. and N. Shephard (1999a). Filtering via simulation: Auxiliary particle ï¬lters. Journal of the American Statistical Association 94(446), 590–599.
Paper not yet in RePEc: Add citation now
- Prause, K. (1999). The generalized hyperbolic models: Estimation, ï¬nancial derivatives and risk measurement. PhD dissertation, University of Freiburg.
Paper not yet in RePEc: Add citation now
Revised edition August 2007.
- Robert, C. P. and G. Casella (2004). Monte Carlo Statistical Methods. New York, USA: Springer.
Paper not yet in RePEc: Add citation now
- Robust bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions. Computational Statistics & Data Analysis 54(12), 2883–2898.
Paper not yet in RePEc: Add citation now
- Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathematical Statistics 23(3), 470–472.
Paper not yet in RePEc: Add citation now
Scott, D. J., D. Wurtz, C. Dong, and T. T. Tran (2011). Moments of the generalized hyperbolic distribution. Computational Statistics 26(3), 459–476.
- Shephard, N. and M. K. Pitt (1997). Likelihood analysis of non-gaussian measurement time series. Biometrika 84(3), 653–667.
Paper not yet in RePEc: Add citation now
- Shibata, M. and T. Watanabe (2005). Bayesian analysis of a markov switching stochastic volatility model. Journal of the Japan Statistical Society 35(2), 205–219.
Paper not yet in RePEc: Add citation now
So, M. K. P., K. Lam, and W. K. Li (1998). A stochastic volatility model with markov switching. Journal of Business & Economic Statistics 16(2), 244–253.
- Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde (2002). Bayesian measures of model complexity and ï¬t. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639.
Paper not yet in RePEc: Add citation now
- Stephens, M. A. (1970). Use of the kolmogorov-smirnov, cramer-von mises and related statistics without extensive tables. Journal of the Royal Statistical Society. Series B (Methodological) 32(1), 115–122.
Paper not yet in RePEc: Add citation now
Takahashi, M., Y. Omori, and T. Watanabe (2009). Estimating stochastic volatility models using daily returns and realized volatility simultaneously. Computational Statistics & Data Analysis 53(6), 2404–2426. The Fourth Special Issue on Computational Econometrics.
- Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics 22(4), 1701–1728.
Paper not yet in RePEc: Add citation now
Watanabe, T. (2000). Bayesian analysis of dynamic bivariate mixture models: Can they explain the behavior of returns and trading volume? Journal of Business & Economic Statistics 18(2), 199–210.
Watanabe, T. and Y. Omori (2004). A multi-move sampler for estimating non-gaussian time series models: Comments on Shephard & Pitt (1997). Biometrika 91(1), 246–248.
- West, M. and J. Harrison (1997). Bayesian Forecasting and Dynamic Models (2nd ed.). New York, USA: Springer.
Paper not yet in RePEc: Add citation now
- Whiteley, N. and A. M. Johansen (2011). Bayesian Time Series Models. Cambridge, UK: Cambridge University Press.
Paper not yet in RePEc: Add citation now
Yu, J. (2005). On leverage in a stochastic volatility model. Journal of Econometrics 127(2), 165–178.
Zhang, L., P. A. Mykland, and Y. Aıt-Sahalia (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association 100(472), 1394–1411.