1.
|
High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO)
/ Battiston, R (Trento U. ; TIFPA-INFN, Trento) ; Bertucci, B (Perugia U. ; INFN, Perugia) ; Adriani, O (Florence U. ; INFN, Florence) ; Ambrosi, G (INFN, Perugia) ; Baoudoy, B (IRFU, Saclay) ; Blasi, P (GSSI, Aquila) ; Boezio, M (INFN, Trieste) ; Campana, D (INFN, Naples) ; Derome, L (LPSC, Grenoble) ; De Mitri, I (GSSI, Aquila) et al.
Multimessenger astrophysics is based on the detection, with the highest possible accuracy, of the cosmic radiation. During the last 20 years, the advent space-borne magnetic spectrometers in space (AMS-01, Pamela, AMS-02), able to measure the charged cosmic radiation separating matter from antimatter, and to provide accurate measurement of the rarest components of Cosmic Rays (CRs) to the highest possible energies, have become possible, together with the ultra-precise measurement of ordinary CRs. [...]
2021 - 32 p.
- Published in : Exp. Astron.: 51 (2021) , pp. 1299-1330 - Published in : Exp. Astron.: 51 (2021) , pp. 1331-1332
Fulltext: Publication - PDF; Erratum - PDF;
|
|
2.
|
|
3.
|
|
4.
|
The FOOT FragmentatiOn Of Target Experiment
/ Alexandrov, Andrey (INFN, Naples) ; Alpat, Behcet (INFN, Perugia) ; Ambrosi, Giovanni (INFN, Perugia) ; Argirò, Stefano (Turin U. ; INFN, Turin) ; Battistoni, Giuseppe (INFN, Milan) ; Bisogni, Maria Giuseppina (Pisa U. ; INFN, Pisa) ; Belcari, Nicola (Pisa U. ; INFN, Pisa) ; Biondi, Silvia (INFN, Bologna ; Bologna U.) ; Bruni, Graziano (INFN, Bologna) ; Camarlinghi, Niccolò (Pisa U. ; INFN, Pisa) et al.
In proton-therapy clinical practice a constant RBE equal to 1.1 is adopted, regardless of the demonstrated RBE variations, which depends on physical and biological parameters. Among other mechanisms, nuclear interactions might influence the proton-RBE due to secondary heavier particles produced by target fragmentation that can significantly contribute to the total dose: an un-wanted and undetermined increase of normal tissues complications probability may occur. [...]
Geneva : CERN, 2019 - 8 p.
- Published in : CERN Proc.: 1 (2019) , pp. 305-312
Fulltext: PDF;
In : 15th International Conference on Nuclear Reaction Mechanisms, Varenna, Italy, 11 - 15 Jun 2018, pp.305-312
|
|
5.
|
|
6.
|
|
7.
|
Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer
/ AMS Collaboration
We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62×10$^6$ iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155±0.006. [...]
2021 - 8 p.
- Published in : Phys. Rev. Lett. 126 (2021) 041104
Fulltext: PDF;
|
|
8.
|
|
9.
|
Towards Understanding the Origin of Cosmic-Ray Positrons
/ Aguilar, M (Madrid, CIEMAT) ; Ali Cavasonza, L (IAS, Julich ; JCHP, Julich) ; Ambrosi, G (INFN, Perugia) ; Arruda, L (LIP, Lisbon) ; Attig, N (IAS, Julich ; JCHP, Julich) ; Azzarello, P (Geneva U.) ; Bachlechner, A (IAS, Julich ; JCHP, Julich) ; Barao, F (LIP, Lisbon) ; Barrau, A (LPSC, Grenoble) ; Barrin, L (CERN) et al.
/AMS
Precision measurements of cosmic ray positrons by the Alpha Magnetic Spectrometer on the International Space Station are presented up to 1 TeV based on 1.9 million positrons.The positron flux exhibits a significant excess starting from $25.2 \pm 1.8$ GeV followed by a sharp drop-off above $284^{+91}_{-64}$ GeV.In the entire energy range the positron flux is well described by the sum of a diffuse termassociated with low energy secondary positrons produced in the collision of cosmic rays, and a new source term of high energy positrons with a finite energy cutoff. The finite cutoff energy of the source term, $E_s$, is established with a significance of more than $4 \sigma$, and it's value is determined to be $E_s = 810^{+310}_{-180}$ GeV.These experimental data on cosmic ray positrons show that, at high energies, they predominantly originate either from dark matter collisions or from new astrophysical sources..
2019 - 9 p.
- Published in : Phys. Rev. Lett. 122 (2019) 041102
Fulltext from Publisher: PDF;
|
|
10.
|
|