Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

CERN Document Server 2,048 records found  1 - 10próximoend  jump to record: Search took 0.61 seconds. 
1.
Learning from the Pandemic: the Future of Meetings in HEP and Beyond / Neubauer, Mark S. (Illinois U., Urbana (main)) ; Adams, Todd (Florida State U.) ; Adelman-McCarthy, Jennifer (Fermilab) ; Benelli, Gabriele (Brown U.) ; Bose, Tulika (Wisconsin U., Madison) ; Britton, David (Glasgow U.) ; Burchat, Pat (Stanford U., ITP) ; Butler, Joel (Fermilab) ; Cartwright, Timothy A. (Wisconsin U., Madison) ; Davídek, Tomáš (Charles U.) et al.
The COVID-19 pandemic has by-and-large prevented in-person meetings since March 2020. [...]
arXiv:2106.15783 ; FERMILAB-PUB-21-308-ND-PPD-SCD.
- 55 p.
Fermilab Library Server - Fulltext - Fulltext
2.
HL-LHC Computing Review: Common Tools and Community Software / HEP Software Foundation Collaboration
Common and community software packages, such as ROOT, Geant4 and event generators have been a key part of the LHC's success so far and continued development and optimisation will be critical in the future. [...]
arXiv:2008.13636 ; HSF-DOC-2020-01.
- 40.
Fermilab Library Server - eConf - Fulltext - Fulltext
3.
Big Data in HEP: A comprehensive use case study / Gutsche, Oliver (Fermilab) ; Cremonesi, Matteo (Fermilab) ; Elmer, Peter (Princeton U.) ; Jayatilaka, Bo (Fermilab) ; Kowalkowski, Jim (Fermilab) ; Pivarski, Jim (Princeton U.) ; Sehrish, Saba (Fermilab) ; Surez, Cristina Mantilla (Fermilab) ; Svyatkovskiy, Alexey (Princeton U.) ; Tran, Nhan (Fermilab)
Experimental Particle Physics has been at the forefront of analyzing the worlds largest datasets for decades. The HEP community was the first to develop suitable software and computing tools for this task. [...]
arXiv:1703.04171; FERMILAB-CONF-17-028-CD.- 2017-11-20 - 8 p. - Published in : J. Phys.: Conf. Ser. 898 (2017) 072012 Fulltext: b5e5862e-38b6-4dec-9957-2cb50a9913ab-1703.04171 - PDF; fermilab-conf-17-028-cd - PDF; Oral-360 - PDF; Fulltext from Publisher: PDF; External links: Fermilab Accepted Manuscript; Open Access fulltext; slides in Indico
In : 22nd International Conference on Computing in High Energy and Nuclear Physics, CHEP 2016, San Francisco, Usa, 10 - 14 Oct 2016, pp.072012
4.
HEP Software Foundation Community White Paper Working Group - Data and Software Preservation to Enable Reuse / Hildreth, M.D. (Notre Dame U.) ; Boehnlein, A. (Jefferson Lab) ; Cranmer, K. (New York U.) ; Dallmeier-Tiessen, S. (CERN) ; Gardner, R. (Chicago U.) ; Hacker, T. (Purdue U.) ; Heinrich, L. (New York U.) ; Jimenez, I. (UC, Santa Cruz) ; Kane, M. (Unlisted, DE) ; Katz, D.S. (NCSA, Urbana) et al.
In this chapter of the High Energy Physics Software Foundation Community Whitepaper, we discuss the current state of infrastructure, best practices, and ongoing developments in the area of data and software preservation in high energy physics. [...]
arXiv:1810.01191 ; HSF-CWP-2017-06 ; FERMILAB-FN-1060-CD.
- 2018.
Fermilab Library Server (fulltext available) - Fulltext - Fulltext
5.
Muon Collider Forum Report / Black, K.M. (U. Wisconsin, Madison (main)) ; Jindariani, S. (Fermilab) ; Li, D. (LBNL, Berkeley) ; Maltoni, F. (Louvain U., CP3 ; INFN, Bologna ; U. Bologna, DIFA) ; Meade, P. (YITP, Stony Brook) ; Stratakis, D. (Fermilab) ; Acosta, D. (Rice U.) ; Agarwal, R. (LBNL, Berkeley) ; Agashe, K. (Maryland U.) ; Aimè, C. (Pavia U.) et al.
A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. [...]
arXiv:2209.01318; FERMILAB-FN-1194.- 2024-02-23 - 94 p. - Published in : JINST 19 (2024) T02015 Fulltext: 2209.01318 - PDF; f9a96f4855e018cb1a1bb8d4d6ebbc35 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
6.
Snowmass2021 Cosmic Frontier: Modeling, statistics, simulations, and computing needs for direct dark matter detection / Kahn, Yonatan (Illinois U., Urbana) ; Monzani, Maria Elena (SLAC ; KIPAC, Menlo Park ; Vatican Astron. Observ.) ; Palladino, Kimberly J. (Oxford U.) ; Anderson, Tyler (SLAC ; KIPAC, Menlo Park) ; Bard, Deborah (LBL, Berkeley) ; Baxter, Daniel (Fermilab) ; Buuck, Micah (SLAC ; KIPAC, Menlo Park) ; Cartaro, Concetta (SLAC ; KIPAC, Menlo Park) ; Collar, Juan I. (Chicago U., EFI) ; Diamond, Miriam (Toronto U.) et al.
This paper summarizes the modeling, statistics, simulation, and computing needs of direct dark matter detection experiments in the next decade..
arXiv:2203.07700 ; FERMILAB-CONF-22-173-PPD.
- 23.
Fermilab Library Server - eConf - Fulltext - Fulltext
7.
HEP Software Foundation Community White Paper Working Group -- Data Organization, Management and Access (DOMA) / Berzano, Dario (CERN) ; Bianchi, Riccardo Maria (Pittsburgh U.) ; Bird, Ian (CERN) ; Bockelman, Brian (Nebraska U.) ; Campana, Simone (CERN) ; De, Kaushik (Texas U., Arlington) ; Duellmann, Dirk (CERN) ; Elmer, Peter (Princeton U.) ; Gardner, Robert (Chicago U., EFI) ; Garonne, Vincent (Oslo U.) et al.
Without significant changes to data organization, management, and access (DOMA), HEP experiments will find scientific output limited by how fast data can be accessed and digested by computational resources. [...]
arXiv:1812.00761 ; HSF-CWP-2017-04 ; FERMILAB-PUB-18-671-CD.
- 2018. - 18 p.
Fermilab Library Server (fulltext available) - Fulltext - Fulltext
8.
Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics / Belayneh, Dawit (U. Chicago (main)) ; Carminati, Federico (CERN) ; Farbin, Amir (Texas U., Arlington (main)) ; Hooberman, Benjamin (Illinois U., Urbana (main)) ; Khattak, Gulrukh (CERN ; Unlisted, PK) ; Liu, Miaoyuan (Fermilab) ; Liu, Junze (Illinois U., Urbana (main)) ; Olivito, Dominick (UC, San Diego (main)) ; Barin Pacela, Vitória (U. Helsinki (main)) ; Pierini, Maurizio (CERN) et al.
Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of particles produced in high-energy physics collisions. We train neural networks on shower data at the calorimeter-cell level, and show significant improvements for simulation and reconstruction when using these networks compared to methods which rely on currently-used state-of-the-art algorithms. [...]
arXiv:1912.06794; FERMILAB-PUB-20-448-CMS.- 2020-07-31 - 31 p. - Published in : Eur. Phys. J. C 80 (2020) 688 Article from SCOAP3: scoap3-fulltext - PDF; scoap - PDF; Fulltext: fermilab-pub-20-448-cms - PDF; 1912.06794 - PDF; Fulltext from Publisher: PDF;
9.
HEP Software Foundation Community White Paper Working Group - Data Analysis and Interpretation / HEP Software Foundation Collaboration
At the heart of experimental high energy physics (HEP) is the development of facilities and instrumentation that provide sensitivity to new phenomena. [...]
arXiv:1804.03983 ; HSF-CWP-2017-05 ; FERMILAB-FN-1057-CD-PPD.
- 2018.
Fermilab Library Server (fulltext available) - Fulltext - Fulltext
10.
Snowmass Theory Frontier: Astrophysics and Cosmology / Green, Daniel (UC, San Diego) ; Ruderman, Joshua T. (New York U., CCPP) ; Safdi, Benjamin R. (UC, Berkeley) ; Shelton, Jessie (Illinois U., Urbana) ; Achucarro, Ana (Leiden U.) ; Adshead, Peter (Illinois U., Urbana) ; Akrami, Yashar (Case Western Reserve U. ; Imperial Coll., London) ; Baryakhtar, Masha (Washington U., Seattle) ; Baumann, Daniel (Taiwan, Natl. Taiwan U. ; U. Amsterdam, GRAPPA) ; Berlin, Asher (Fermilab) et al.
We summarize progress made in theoretical astrophysics and cosmology over the past decade and areas of interest for the coming decade. [...]
arXiv:2209.06854 ; FERMILAB-PUB-22-721-T.
- 57.
Fermilab Library Server - Fulltext - Fulltext

Haven't found what you were looking for? Try your search on other servers:
recid:2775806 em Amazon
recid:2775806 em CERN EDMS
recid:2775806 em CERN Intranet
recid:2775806 em CiteSeer
recid:2775806 em Google Books
recid:2775806 em Google Scholar
recid:2775806 em Google Web
recid:2775806 em IEC
recid:2775806 em IHS
recid:2775806 em INSPIRE
recid:2775806 em ISO
recid:2775806 em KISS Books/Journals
recid:2775806 em KISS Preprints
recid:2775806 em NEBIS
recid:2775806 em SLAC Library Catalog