Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

CERN Document Server 2,048 record trovati  1 - 10successivofine  salta al record: La ricerca ha impiegato 0.21 secondi. 
1.
AD-7/GBAR status report for the 2023 CERN SPSC / GBAR Collaboration
We report on the activities performed during 2022 and the plans for 2023 for the GBAR experiment..
CERN-SPSC-2023-008 ; SPSC-SR-324.
- 2023.
Fulltext
2.
Production of antihydrogen atoms by 6 keV antiprotons through a positronium cloud / Adrich, P. (NCBJ, Swierk) ; Blumer, P. (Zurich, ETH) ; Caratsch, G. (Zurich, ETH) ; Chung, M. (UNIST, Ulsan) ; Cladé, P. (Paris, Lab. Kastler Brossel) ; Comini, P. (IRFU, Saclay) ; Crivelli, P. (Zurich, ETH) ; Dalkarov, O. (Unlisted) ; Debu, P. (IRFU, Saclay) ; Douillet, A. (Paris, Lab. Kastler Brossel ; U. Evry) et al.
We report on the first production of an antihydrogen beam by charge exchange of 6.1 keV antiprotons with a cloud of positronium in the GBAR experiment at CERN. The antiproton beam was delivered by the AD/ELENA facility. [...]
arXiv:2306.15801.- 2023-11-06 - 18 p. - Published in : Eur. Phys. J. C Fulltext: 2306.15801 - PDF; Publication - PDF; Erratum - PDF;
3.
Development of a PbWO$_4$ Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment / Kim, B H (Seoul Natl. U.) ; Choi, J J (Seoul Natl. U.) ; Chung, M (UNIST, Ulsan) ; Cladé, P (Paris, Lab. Kastler Brossel) ; Comini, P (IRFU, Saclay) ; Crivelli, P (Zurich, ETH) ; Crépin, P-P (Paris, Lab. Kastler Brossel) ; Dalkarov, O (Lebedev Inst.) ; Debu, P (IRFU, Saclay) ; Dodd, L (Swansea U.) et al.
We have developed a PbWO$_{4}$ (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium ($\mathrm{o-Ps}$) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of $\mathrm{o-Ps}$ to reduce part of the uncertainties of the measurement. [...]
2020 - 4 p. - Published in : Acta Phys. Pol. A 137 (2020) 122-125
In : 15th International Workshop on Slow Positron Beam Techniques and Applications, Prague, Czechia, 2-6 Sep 2019, pp.122-125
4.
Accumulation of Positrons from a LINAC Based Source / GBAR Collaboration
The GBAR experiment aims to measure the gravitational acceleration of antihydrogen H. It will use H + ions formed by the interaction of antiprotons with a dense positronium cloud, which will require about $10^{10}$ positrons to produce one H + [...]
2020 - 3 p. - Published in : Acta Phys. Pol. A 137 (2020) 164-166
In : 15th International Workshop on Slow Positron Beam Techniques and Applications, Prague, Czechia, 2-6 Sep 2019, pp.164-166
5.
AD-7/GBAR status report for the 2015 CERN SPSC / GBAR Collaboration
The GBAR experiment will use one of the low energy antiproton beam lines from the ELENA ring that is being prepared and scheduled to start operating in 2017 [...]
CERN-SPSC-2015-001 ; SPSC-SR-151.
- 2015.
Fulltext
6.
A pulsed high-voltage decelerator system to deliver low-energy antiprotons / Husson, A (IJCLab, Orsay) ; Kim, B H (Seoul Natl. U., Dept. Phys. Astron.) ; Welker, A (CERN) ; Charlton, M (Swansea U.) ; Choi, J J (Seoul Natl. U., Dept. Phys. Astron.) ; Chung, M (UNIST, Ulsan) ; Cladé, P (Paris, Lab. Kastler Brossel) ; Comini, P (IRFU, Saclay) ; Crépin, P -P (Paris, Lab. Kastler Brossel) ; Crivelli, P (Zurich, ETH-CSCS/SCSC) et al.
The GBAR (Gravitational Behavior of Antihydrogen at Rest) experiment at CERN requires efficient deceleration of 100 keV antiprotons provided by the new ELENA synchrotron ring to synthesize antihydrogen. This is accomplished using electrostatic deceleration optics and a drift tube that is designed to switch from -99 kV to ground when the antiproton bunch is inside – essentially a charged particle “elevator” – producing a 1 keV pulse. [...]
2021 - 7 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1002 (2021) 165245
7.
AD-7/GBAR status report for the 2014 CERN SPSC / GBAR Collaboration
A status report is given on the preparations and tests in view of the AD-7 / GBAR experiment at the future ELENA facility to be constructed at the CERN Antiproton Decelerator..
CERN-SPSC-2014-011 ; SPSC-SR-136.
- 2014.
Fulltext
8.
Towards a test of the weak equivalence principle of gravity using anti-hydrogen at CERN / Banerjee, D (ETH, Zurich (main)) ; Biraben, F (Paris, Lab. Kastler Brossel) ; Charlton, M (Swansea U.) ; Cladé, P (Paris, Lab. Kastler Brossel) ; Comini, P (CSNSM, Orsay) ; Crivelli, P (ETH, Zurich (main)) ; Dalkarov, O (Lebedev Inst.) ; Debu, P (IRFU, SPP, Saclay) ; Dodd, L (Swansea U.) ; Douillet, A (Paris, Lab. Kastler Brossel) et al.
The aim of the GBAR (Gravitational Behavior of Antimatter at Rest) experiment is to measure the free fall acceleration of an antihydrogen atom, in the terrestrial gravitational field at CERN and therefore test the Weak Equivalence Principle with antimatter. The aim is to measure the local gravity with a 1% uncertainty which can be reduced to few parts of 10-3..
2016 - 2 p. - Published in : 10.1109/CPEM.2016.7540781
9.
Positron accumulation in the GBAR experiment / GBAR Collaboration
We present a description of the GBAR positron (e+) trapping apparatus, which consists of a three stage Buffer Gas Trap (BGT) followed by a High Field Penning Trap (HFT), and discuss its performance. The overall goal of the GBAR experiment is to measure the acceleration of the neutral antihydrogen (H) atom in the terrestrial gravitational field by neutralising a positive antihydrogen ion (H+), which has been cooled to a low temperature, and observing the subsequent H annihilation following free fall. [...]
arXiv:2205.04530.- 2022-07-25 - 28 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1040 (2022) 167263 Fulltext: PDF;
10.
AD-7/GBAR status report for the 2024 CERN SPSC / Mansoulié, B
We report on the activities performed during 2023 and the plans for 2024 for the GBAR experiment..
CERN-SPSC-2024-006 ; SPSC-SR-341.
- 2024.
Fulltext

Non hai trovato quello che cercavi? Prova la ricerca su altri server:
recid:2848094 in Amazon
recid:2848094 in CERN EDMS
recid:2848094 in CERN Intranet
recid:2848094 in CiteSeer
recid:2848094 in Google Books
recid:2848094 in Google Scholar
recid:2848094 in Google Web
recid:2848094 in IEC
recid:2848094 in IHS
recid:2848094 in INSPIRE
recid:2848094 in ISO
recid:2848094 in KISS Books/Journals
recid:2848094 in KISS Preprints
recid:2848094 in NEBIS
recid:2848094 in SLAC Library Catalog