1.
|
The present and future of QCD
/ Achenbach, P. (Jefferson Lab) ; Adhikari, D. (Virginia Tech.) ; Afanasev, A. (George Washington U. ; Jefferson Lab) ; Afzal, F. (Bonn U., HISKP ; Bonn U.) ; Aidala, C.A. (Michigan U.) ; Al-bataineh, A. (Jordan U. Sci. Tech. ; Yarmouk U. ; Kansas U.) ; Almaalol, D.K. (Illinois U., Urbana ; Illinois U., Urbana (main)) ; Amaryan, M. (Old Dominion U. ; Old Dominion U. (main)) ; Androić, D. (Zagreb U.) ; Armstrong, W.R. (Argonne ; Argonne, PHY) et al.
This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. [...]
arXiv:2303.02579; JLAB-PHY-23-3808.-
2024-04-15 - 111 p.
- Published in : Nucl. Phys. A 1047 (2024) 122874
Fulltext: 2303.02579 - PDF; Publication - PDF; External link: JLab Document Server
|
|
2.
|
50 Years of Quantum Chromodynamics
/ Gross, Franz (Jefferson Lab ; William-Mary Coll.) ; Klempt, Eberhard (Bonn U., HISKP) ; Brodsky, Stanley J. (SLAC) ; Buras, Andrzej J. (TUM-IAS, Munich) ; Burkert, Volker D. (Jefferson Lab) ; Heinrich, Gudrun (KIT, Karlsruhe, TP) ; Jakobs, Karl (Freiburg U.) ; Meyer, Curtis A. (Carnegie Mellon U.) ; Orginos, Kostas (Jefferson Lab ; William-Mary Coll.) ; Strickland, Michael (Kent State U.) et al.
This paper presents a comprehensive review of both the theory and experimental successes of Quantum Chromodynamics, starting with its emergence as a well defined theory in 1972-73 and following developments and results up to the present day. Topics include a review of the earliest theoretical and experimental foundations; the fundamental constants of QCD; an introductory discussion of lattice QCD, the only known method for obtaining exact predictions from QCD; methods for approximating QCD, with special focus on effective field theories; QCD under extreme conditions; measurements and predictions of meson and baryon states; a special discussion of the structure of the nucleon; techniques for study of QCD at high energy, including treatment of jets and showers; measurements at colliders; weak decays and quark mixing; and a section on the future, which discusses new experimental facilities or upgrades currently funded. [...]
arXiv:2212.11107.-
2023-12 - 636 p.
- Published in : Eur. Phys. J. C 83 (2023) 1125
Fulltext: 2212.11107 - PDF; Publication - PDF; External link: JLAB Document Server
|
|
3.
|
|
Opportunities for precision QCD physics in hadronization at Belle II -- a snowmass whitepaper
/ Accardi, A. (Hampton U. ; Jefferson Lab) ; Chien, Y.T. (SUNY, Stony Brook ; YITP, Stony Brook ; Georgia State U.) ; d'Enterria, D. (CERN) ; Deshpande, A. (SUNY, Stony Brook ; Brookhaven) ; Dilks, C. (Duke U.) ; Gutierrez Garcia, P.A. (Madrid U.) ; Jacobs, W.W. (Indiana U.) ; Krauss, F. (Durham U., IPPP) ; Gomez, S. Leal (Vienna U.) ; Mondal, M. Mouli (SUNY, Stony Brook) et al.
This document presents a selection of QCD studies accessible to high-precision studies with hadronic final states in $e^+e^-$ collisions at Belle II. [...]
arXiv:2204.02280.
-
58 p.
eConf - Fulltext
|
|
4.
|
|
Precision QCD, Hadronic Structure & Forward QCD, Heavy Ions: Report of Energy Frontier Topical Groups 5, 6, 7 submitted to Snowmass 2021
/ Begel, M. (Brookhaven) ; Hoeche, S. (Fermilab) ; Schmitt, M. (Northwestern U.) ; Lin, H.-W. (Michigan State U.) ; Nadolsky, P.M. (Southern Methodist U. (main)) ; Royon, C. (Kansas U.) ; Lee, Y-J. (MIT ; LLR, Palaiseau) ; Mukherjee, S. (Brookhaven) ; Baldenegro, C. ; Campbell, J. (Fermilab) et al.
This report was prepared on behalf of three Energy Frontier Topical Groups of the Snowmass 2021 Community Planning Exercise. [...]
arXiv:2209.14872 ; FERMILAB-CONF-22-733-SCD-T ; SMU-HEP-22-06.
-
95 p.
Fermilab Library Server - Fulltext - Fulltext
|
|
5.
|
Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity SystemDesign and vertical tests of double-quarter wave cavity prototypes for the high-luminosity LHC crab cavity system
/ Verdú-Andrés, S. (Brookhaven Natl. Lab.) ; Artoos, K. (CERN) ; Belomestnykh, S. (Brookhaven Natl. Lab. ; Fermilab ; Stony Brook U.) ; Ben-Zvi, I. (Brookhaven Natl. Lab. ; Stony Brook U.) ; Boulware, C. (Unlisted, US, MI) ; Burt, G. (Lancaster U. (main) ; Cockcroft Inst. Accel. Sci. Tech.) ; Calaga, R. (CERN) ; Capatina, O. (CERN) ; Carra, F. (CERN) ; Castilla, A. (CERN) et al.
Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. [...]
arXiv:1805.08123; FERMILAB-PUB-18-207-TD.-
2018-08-13 - 3 p.
- Published in : Phys. Rev. Accel. Beams 21 (2018) 082002
Fulltext: thpal146 - PDF; fermilab-pub-18-207-td - PDF; arXiv:1805.08123 - PDF; Fulltext from Publisher: openaccess_PhysRevAccelBeams.21.082002 - PDF; 10.1103_PhysRevAccelBeams.21.082002 - PDF; External link: Fermilab Library Server (fulltext available)
|
|
6.
|
|
Photocathode characterisation for robust PICOSEC Micromegas precise-timing detectors
/ Lisowska, M. (CERN ; IRFU, Saclay) ; Aleksan, R. (IRFU, Saclay) ; Angelis, Y. (Aristotle U., Thessaloniki) ; Aune, S. (IRFU, Saclay) ; Bortfeldt, J. (Munich U.) ; Brunbauer, F. (CERN) ; Brunoldi, M. (Pavia U. ; INFN, Pavia) ; Chatzianagnostou, E. (Aristotle U., Thessaloniki) ; Datta, J. (SUNY, Stony Brook) ; Dehmelt, K. (Jefferson Lab) et al.
The PICOSEC Micromegas detector is a~precise-timing gaseous detector based on a~Cherenkov radiator coupled with a~semi-transparent photocathode and a~Micromegas amplifying structure, targeting a~time resolution of tens of picoseconds for minimum ionising particles. [...]
arXiv:2407.09953.
-
9.
Fermilab Library Server - Fulltext - Fulltext
|
|
7.
|
|
Single channel PICOSEC Micromegas detector with improved time resolution
/ Utrobicic, A. (Boskovic Inst., Zagreb) ; Aleksan, R. (IRFU, Saclay) ; Angelis, Y. (Aristotle U., Thessaloniki) ; Bortfeldt, J. (Munich U.) ; Brunbauer, F. (CERN) ; Brunoldi, M. (Pavia U. ; INFN, Pavia) ; Chatzianagnostou, E. (Aristotle U., Thessaloniki) ; Datta, J. (SUNY, Stony Brook) ; Dehmelt, K. (Jefferson Lab) ; Fanourakis, G. (American Coll. of Greece) et al.
This paper presents design guidelines and experimental verification of a single-channel PICOSEC Micromegas (MM) detector with an improved time resolution. [...]
arXiv:2406.05657 ; FERMILAB-PUB-24-0499-CMS-V.
-
29.
Fermilab Library Server - Fulltext - Fulltext
|
|
8.
|
Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab
/ Accardi, A. (Hampton U.) ; Achenbach, P. (Jefferson Lab) ; Adhikari, D. (Virginia Tech.) ; Afanasev, A. (George Washington U.) ; Akondi, C.S. (Florida State U.) ; Akopov, N. (Yerevan Phys. Inst.) ; Albaladejo, M. (Valencia U., IFIC) ; Albataineh, H. (Texas A-M ; HARC, Woodlands) ; Albrecht, M. (Jefferson Lab) ; Almeida-Zamora, B. (Sonora U.) et al.
This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. [...]
arXiv:2306.09360; JLAB-PHY-23-3840; JLAB-THY-23-3848.-
2024-09-04 - 139 p.
- Published in : Eur. Phys. J. A 60 (2024) 173
Fulltext: PDF; External link: JLab Document Server
|
|
9.
|
|
A lattice QCD perspective on weak decays of b and c quarks Snowmass 2022 White Paper
/ Boyle, Peter A. (Brookhaven ; U. Edinburgh, Higgs Ctr. Theor. Phys.) ; Chakraborty, Bipasha (Cambridge U., DAMTP) ; Davies, Christine T.H. (Glasgow U.) ; DeGrand, Thomas (Colorado U.) ; DeTar, Carleton (Utah U.) ; Del Debbio, Luigi (U. Edinburgh, Higgs Ctr. Theor. Phys.) ; El-Khadra, Aida X. (Illinois U., Urbana) ; Erben, Felix (U. Edinburgh, Higgs Ctr. Theor. Phys.) ; Flynn, Jonathan M. (U. Southampton (main)) ; Gámiz, Elvira (Granada U., Theor. Phys. Astrophys.) et al.
Lattice quantum chromodynamics has proven to be an indispensable method to determine nonperturbative strong contributions to weak decay processes. [...]
arXiv:2205.15373 ; CERN-TH-2022-036 ; FERMILAB-CONF-22-433-SCD-T ; JLAB-THY-22-3582,
MITP-22-020 ; MIT-CTP/5413 ; MS-TP-22-07 ; SI-HEP-2022-11.
-
19.
Fermilab Library Server - eConf - Fulltext - Fulltext
|
|
10.
|
|