1.
|
VHEE FLASH sparing effect measured at CLEAR, CERN with DNA damage of pBR322 plasmid as a biological endpoint
/ Wanstall, Hannah C (Manchester U. ; Daresbury) ; Korysko, Pierre (Oxford U. ; CERN) ; Farabolini, Wilfred (CERN) ; Corsini, Roberto (CERN) ; Bateman, Joseph J (Oxford U., Theor. Phys.) ; Rieker, Vilde (CERN ; Oslo U.) ; Hemming, Abigail (U. Manchester (main)) ; Henthorn, Nicholas T (U. Manchester (main) ; Manchester U.) ; Merchant, Michael J (Manchester U.) ; Santina, Elham (Manchester U.) et al.
Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as ‘FLASH’. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). [...]
2024 - 13 p.
- Published in : Sci. Rep. 14 (2024) 14803
Fulltext: PDF;
|
|
2.
|
Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage
/ Small, K L (Manchester U. ; Daresbury) ; Henthorn, N T (Manchester U. ; Unlisted, GB) ; Angal-Kalinin, D (Manchester U. ; Daresbury ; Cockcroft Inst. Accel. Sci. Tech.) ; Chadwick, A L (Manchester U. ; Unlisted, GB) ; Santina, E (Manchester U. ; Unlisted, GB) ; Aitkenhead, A (Manchester U. ; Unlisted, GB) ; Kirkby, K J (Manchester U. ; Unlisted, GB) ; Smith, R J (Daresbury ; Cockcroft Inst. Accel. Sci. Tech.) ; Surman, M (Daresbury ; Cockcroft Inst. Accel. Sci. Tech.) ; Jones, J (Daresbury ; Cockcroft Inst. Accel. Sci. Tech.) et al.
This paper presents the first plasmid DNA irradiations carried out with Very High Energy Electrons (VHEE) over 100–200 MeV at the CLEAR user facility at CERN to determine the Relative Biological Effectiveness (RBE) of VHEE. DNA damage yields were measured in dry and aqueous environments to determine that ~ 99% of total DNA breaks were caused by indirect effects, consistent with other published measurements for protons and photons. [...]
2021 - 12 p.
- Published in : Sci. Rep. 11 (2021) 3341
Fulltext from publisher: PDF;
|
|
3.
|
Methods for VHEE/FLASH Radiotherapy Studies and High Dose Rate Dosimetry at the CLEAR User Facility
/ Korysko, Pierre (U. Oxford (main) ; CERN) ; Bateman, Joseph (U. Oxford (main) ; CERN) ; Corsini, Roberto (CERN) ; Dyks, Luke (CERN) ; Farabolini, Wilfrid (CERN) ; Rieker, Vilde (CERN) ; Robertson, Cameron (U. Oxford (main) ; CERN)
The CERN Linear Electron Accelerator for Research (CLEAR), operating since 2017, is a user facility providing electron beams for a varied and large range of experiments. The accelerator can generate a 60-220 MeV electron beam and it was recently selected to study the feasibility of using Very High Energy Electrons (VHEE) at Ultra High Dose Rate (UHDR) for cancer radiotherapy. [...]
2022 - 4 p.
- Published in : JACoW LINAC 2022 (2022) 758-761
Fulltext: PDF;
In : 31st Linear Accelerator Conference (LINAC22), Liverpool, UK, 28 Aug - 2 Sep 2022, pp.758-761
|
|
4.
|
Real-time Plastic Scintillation Dosimetry of Ultra-High Dose Rate Very High Energy Electrons (VHEE) at CERN CLEAR Facility
/ Giguère, Cloé (Laval U.) ; Hart, Alexander (Victoria U.) ; Bateman, Joseph (Oxford U.) ; Korysko, Pierre (Oxford U. ; CERN) ; Farabolini, Wilfrid (CERN) ; LeChasseur, Yoan (McGill U.) ; Bazalova-Carter, Magdalena (Victoria U.) ; Beaulieu, Luc (Laval U.)
Very High Energy Electrons (VHEE) that can theoretically treat deep-seated tumours and be delivered at ultra-high dose rates (UHDR) could be the solution to translate FLASH radiotherapy into the clinic. Standard dosimeters have limited application in those extreme conditions, but dose-rate independent and fast-response plastic scintillation detectors (PSDs) are a potential alternative to overcome this. [...]
2024 - 4 p.
- Published in : J. Phys. : Conf. Ser. 2799 (2024) 012016
Fulltext: PDF;
In : 13th International Conference on 3D dosimetry (IC3DDose 2024), Aarhus, Denmark, 17 - 19 Jun 2024, pp.012016
|
|
5.
|
CERN-based experiments and Monte-Carlo studies on focused dose delivery with very high energy electron (VHEE) beams for radiotherapy applications
/ Whitmore, L (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech. ; Texas U., Houston) ; Mackay, R I (Manchester U.) ; van Herk, M (Manchester U.) ; Korysko, P (Oxford U. ; CERN) ; Farabolini, W (CERN) ; Malyzhenkov, A (CERN) ; Corsini, R (CERN) ; Jones, R M (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.)
Very High Energy Electron (VHEE) beams are a promising alternative to conventional radiotherapy due to their highly penetrating nature and their applicability as a modality for FLASH (ultra-high dose-rate) radiotherapy. The dose distributions due to VHEE need to be optimised; one option is through the use of quadrupole magnets to focus the beam, reducing the dose to healthy tissue and allowing for targeted dose delivery at conventional or FLASH dose-rates. [...]
2024 - 15 p.
- Published in : Sci. Rep. 14 (2024) 11120
Fulltext: PDF;
|
|
6.
|
Influence of heterogeneous media on Very High Energy Electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities
/ Lagzda, Agnese (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Angal-Kalinin, Deepa (Cockcroft Inst. Accel. Sci. Tech. ; Daresbury) ; Jones, James (Cockcroft Inst. Accel. Sci. Tech. ; Daresbury) ; Aitkenhead, Adam (Unlisted, UK ; Manchester U.) ; Kirkby, Karen J (Unlisted, UK ; Manchester U.) ; MacKay, Ranald (Unlisted, UK ; Manchester U.) ; Van Herk, Marcel (Unlisted, UK ; Manchester U.) ; Farabolini, Wilfrid (CERN) ; Zeeshan, Sumaira (CERN) ; Jones, Roger M (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.)
• First experimental demonstration of the relative insensitivity of VHEE beams to inhomogeneities. • Topas/GEANT4 simulations on experiments conducted at CERN’s CLEAR facility are in good agreement. [...]
2020 - 12 p.
- Published in : Nucl. Instrum. Methods Phys. Res., B 482 (2020) 70-81
|
|
7.
|
Plastic Scintillator Dosimetry of Ultrahigh Dose-Rate 200 MeV Electrons at CLEAR
/ Hart, Alexander (Victoria U.) ; Giguère, Cloé (Laval U.) ; Bateman, Joseph (Oxford U.) ; Korysko, Pierre (Oxford U.) ; Farabolini, Wilfrid (CERN) ; Rieker, Vilde (CERN ; Oslo U.) ; Esplen, Nolan (Victoria U.) ; Corsini, Roberto (CERN) ; Dosanjh, Manjit (Oxford U.) ; Beaulieu, Luc (Laval U.) et al.
Very-high-energy electron (VHEE) beams with energies greater than 100 MeV may be promising candidates for FLASH radiotherapy due to their favorable dose distributions and accessibility of ultrahigh dose rates (UHDRs). Combining VHEE with the normal tissue-sparing FLASH effect of UHDR radiotherapy could improve patient outcomes. [...]
2024 - 9 p.
- Published in : IEEE Sensors J. 24 (2024) 14229-14237
|
|
8.
|
VHEE High Dose Rate Dosimetry Studies in CLEAR
/ Rieker, Vilde (CERN) ; Bateman, Joseph (JAI, UK ; CERN) ; Corsini, Roberto (CERN) ; Dyks, Luke (CERN ; Oxford U.) ; Farabolini, Wilfrid (IRFU, Saclay) ; Korysko, Pierre (Oxford U. ; CERN)
The 200 MeV electron beam of the CERN Linear Accelerator for Research (CLEAR) user facility at CERN has been intensively used to study the potential use of Very High Energy Electrons (VHEE) in cancer radiotherapy. In particular, irradiation tests have been performed in the high dose rate regime, which has gained a lot of interest for the so called FLASH biological effect, in which cancer cells are damaged while healthy tissue is largely spared. [...]
2022 - 4 p.
- Published in : JACoW IPAC 2022 (2022) 3026-3029
Fulltext: PDF;
In : 13th International Particle Accelerator Conference (IPAC 2022), Bangkok, Thailand, 12 - 17 Jun 2022, pp.3026-3029
|
|
9.
|
Development of a novel fibre optic beam profile and dose monitor for very high energy electron radiotherapy at ultrahigh dose rates
/ Bateman, Joseph J (JAI, UK) ; Buchanan, Emma (CERN) ; Corsini, Roberto (CERN) ; Farabolini, Wilfrid (CERN) ; Korysko, Pierre (JAI, UK ; CERN) ; Larsen, Robert Garbrecht (CERN ; Groningen U.) ; Malyzhenkov, Alexander (CERN) ; Ruiz, Iñaki Ortega (CERN) ; Rieker, Vilde (CERN ; Oslo U.) ; Gerbershagen, Alexander (Groningen U.)
Objective. Very high energy electrons (VHEE) in the range of 50–250 MeV are of interest for treating deep-seated tumours with FLASH radiotherapy (RT). [...]
2024 - 16 p.
- Published in : Phys. Med. Biol. 69 (2024) 085006
Fulltext: PDF;
|
|
10.
|
A novel fibre optic monitor for VHEE UHDR beam monitoring: first tests at CLEAR
/ Bateman, Joseph (JAI, UK ; CERN) ; Buchanan, Emma (CERN) ; Corsini, Roberto (CERN) ; Gerbershagen, Alexander (Groningen U.) ; Ortega Ruiz, Inaki (CERN) ; Dosanjh, Manjit (JAI, UK ; CERN) ; Farabolini, Wilfrid (CERN) ; Rieker, Vilde (CERN ; Oslo U.) ; Korysko, Pierre (JAI, UK ; CERN) ; Malyzhenkov, Alexander (CERN)
Beam monitoring for Ultra High Dose Rate (UHDR) radiation therapy using pulsed beams, i.e. Very High Energy Electrons (VHEE), is a major challenge. [...]
2023
- Published in : JACoW IPAC 2023 (2023) THPL041
Fulltext: PDF;
In : 14th International Particle Accelerator Conference (IPAC 2023), Venice, Italy, 7 - 12 May 2023, pp.THPL041
|
|