1.
|
CIRCUS: an autonomous control system for antimatter, atomic and quantum physics experiments
/ AEgIS Collaboration
A powerful and robust control system is a crucial, often neglected, pillar of any modern, complex physics experiment that requires the management of a multitude of different devices and their precise time synchronisation. The AEgIS collaboration presents CIRCUS, a novel, autonomous control system optimised for time-critical experiments such as those at CERN's Antiproton Decelerator and, more broadly, in atomic and quantum physics research. [...]
arXiv:2402.04637.-
2024-02-15 - 35 p.
- Published in : EPJ Quant. Technol. 11 (2024) 10
Fulltext: document - PDF; 2402.04637 - PDF;
|
|
2.
|
TALOS (Total Automation of LabVIEW Operations for Science): A framework for autonomous control systems for complex experiments
/ Volponi, M. (CERN ; Trento U. ; INFN, Trento) ; Zielinski, J. (Warsaw U. of Tech.) ; Rauschendorfer, T. (CERN ; Leipzig U.) ; Huck, S. (CERN ; Hamburg U.) ; Caravita, R. (Trento U. ; INFN, Trento) ; Auzins, M. (CERN ; Latvia U.) ; Bergmann, B. (Prague, Tech. U.) ; Burian, P. (Prague, Tech. U.) ; Brusa, R.S. (Trento U. ; INFN, Trento) ; Camper, A. (Oslo U.) et al.
Modern physics experiments are frequently very complex, relying on multiple simultaneous events to happen in order to obtain the desired result. The experiment control system plays a central role in orchestrating the measurement setup: However, its development is often treated as secondary with respect to the hardware, its importance becoming evident only during the operational phase. [...]
arXiv:2409.01058.-
2024-08-01 - 22 p.
- Published in : Rev. Sci. Instrum. 95 (2024) 085116
Fulltext: 2409.01058 - PDF; Publication - PDF;
|
|
3.
|
|
4.
|
|
5.
|
High-resolution MCP-TimePix3 imaging/timing detector for antimatter physics
/ Glöggler, L (CERN ; Berlin, Tech. U.) ; Caravita, R (INFN, Trento) ; Auzins, M (Latvia U.) ; Bergmann, B (Prague, Tech. U.) ; Brusa, R S (INFN, Trento ; Trento U.) ; Burian, P (Prague, Tech. U.) ; Camper, A (Oslo U.) ; Castelli, F (Milan U.) ; Cheinet, P (LAC, Orsay) ; Ciuryło, R (Torun, Copernicus Astron. Ctr.) et al.
We present a hybrid imaging/timing detector for force sensitive inertial measurements designed for measurements on positronium, the metastable bound state of an electron and a positron, but also suitable for applications involving other low intensity, low energy beams of neutral (antimatter)-atoms, such as antihydrogen. The performance of the prototype detector was evaluated with a tunable low energy positron beam, resulting in a spatial resolution of 12 mm, a detection efficiency of up to 40% and a time-resolution in the order of tens of ns..
2022 - 12 p.
- Published in : Meas. Sci. Technol. 33 (2022) 115105
Fulltext: PDF;
|
|
6.
|
Method for measuring positron number in high intensity nanosecond positron bunches based on Poisson statistic
/ Rienäcker, B (CERN) ; Mariazzi, S (Trento U. ; TIFPA-INFN, Trento) ; Povolo, L (Trento U. ; TIFPA-INFN, Trento) ; Guatieri, F (Tech. U., Munich (main) ; Trento U.) ; Caravita, R (TIFPA-INFN, Trento) ; Penasa, L (Trento U. ; TIFPA-INFN, Trento) ; Pino, F (U. Padua, Dept. Phys. Astron.) ; Nebbia, G (INFN, Padua) ; Brusa, R S (Trento U. ; TIFPA-INFN, Trento)
A novel method for the measurement of the number of positrons contained in intense positron bunches is presented. The technique is based on the Poisson distribution of the number of gamma rays emitted by many simultaneous positron–electron annihilations in a small solid angle. [...]
2022 - 5 p.
- Published in : Nucl. Instrum. Methods Phys. Res., A 1033 (2022) 166661
Publication: PDF;
|
|
7.
|
Control system for ion Penning traps at the AEgIS experiment at CERN
/ Nowicka, D (Warsaw U. of Tech.) ; Bergmann, B (Prague, Tech. U.) ; Bonomi, G (Brescia U. ; INFN, Brescia ; INFN, Pavia) ; Brusa, R S (TIFPA-INFN, Trento ; Trento U.) ; Burian, P (Prague, Tech. U.) ; Camper, A (Oslo U.) ; Caravita, R (TIFPA-INFN, Trento ; Trento U.) ; Castelli, F (Milan U. ; INFN, Milan) ; Cheinet, P (LAC, Orsay) ; Comparat, D (LAC, Orsay) et al.
The AEgIS experiment located at the Antiproton Decelerator at CERN aims to measure the gravitational fall of a cold antihydrogen pulsed beam. The precise observation of the antiatoms in the Earth gravitational field requires a controlled production and manipulation of antihydrogen. [...]
2022 - 5 p.
- Published in : J. Phys. : Conf. Ser. 2374 (2022) 012038
Fulltext: PDF;
In : International Conference on Technology and Instrumentation in Particle Physics (TIPP 2021), Online, Canada, 24 - 29 May 2021, pp.012038
|
|
8.
|
|
9.
|
A fiber detector to monitor ortho-Ps formation and decay
/ Rienäcker, Benjamin (CERN) ; Brusa, Roberto Sennen (U. Trento (main) ; TIFPA-INFN, Trento) ; Caravita, Ruggero (TIFPA-INFN, Trento) ; Mariazzi, Sebastiano (TIFPA-INFN, Trento) ; Penasa, L. (Trento U. ; TIFPA-INFN, Trento) ; Pino, Felix (U. Padua, Dept. Phys. Astron.) ; Ranum, Oline Aas (U. Amsterdam, GRAPPA) ; Nebbia, Giancarlo (INFN, Padua)
We describe a novel method to use a scintillating fiber detector similar to the Fast Annihilation Cryogenic Tracking (FACT) used at the antimatter experiment AE$\bar{g}$IS to monitor the presence of ortho-positronium. A single scintillating fiber was coupled to a photomultiplier tube and irradiated by flashes of about 6 x 10$^{6}$ 511 keV $\gamma$-rays produced by $\approx10\,\text{ns}$ long positron pulses. [...]
arXiv:2111.01503.-
2022-03-11 - 6 p.
- Published in : Nucl. Instrum. Methods Phys. Res., A 1027 (2022) 166275
Fulltext: PDF;
|
|
10.
|
An alexandrite laser system for positronium laser cooling
/ Gusakova, N (CERN ; Norwegian U. Sci. Tech.) ; Camper, A (Oslo U.) ; Caravita, R (Trento U. ; INFN, Trento) ; Penasa, L (Trento U. ; INFN, Trento ; U. Trento (main)) ; Glöggler, L T (CERN) ; Wolz, T (CERN) ; Krumins, V (CERN ; Latvia U.) ; Gustafsson, F P (CERN) ; Huck, S (CERN ; Hamburg U.) ; Volponi, M (CERN ; Trento U. ; INFN, Trento ; U. Trento (main)) et al.
We report on a Q-switched alexandrite based ∼100ns long pulse duration ultra-violet laser system. The central wavelength of the fundamental pulse is set by a Volume Bragg Grating in reflection and can be tuned between 728nm and 742nm. [...]
2024 - 8 p.
- Published in : Opt. Laser Technol. 182 (2025) 112097
Fulltext: PDF;
|
|