1.
|
|
2.
|
Construction and test of the SM1 type Micromegas chambers for the upgrade of the ATLAS forward muon spectrometer
/ Agarwala, J (Pavia U.) ; Alviggi, M G (Naples U. ; INFN, Naples) ; Antonelli, M (Frascati) ; Anulli, F (INFN, Rome ; Rome U.) ; Arcangeletti, C (Frascati) ; Auricchio, S (Naples U. ; INFN, Naples) ; Bagnaia, P (INFN, Rome ; Rome U.) ; Bariani, S (Pavia U.) ; Baroncelli, A (Rome III U. ; INFN, Rome3) ; Bashta, I (Rome III U. ; INFN, Rome3) et al.
Large-size Resistive Micromegas have been chosen for the upgrade of the forward muon spectrometer of the ATLAS experiment, the New Small Wheel project. These chambers, together with small-strip Thin Gap Chambers (sTGC), allow reconstruction of high-momentum muon tracks in a high-radiation environment and provide a robust low-threshold single-muon trigger. [...]
2022 - 31 p.
- Published in : Nucl. Instrum. Methods Phys. Res., A 1040 (2022) 167285
|
|
3.
|
|
4.
|
Construction techniques and performances of a full-size prototype Micromegas chamber for the ATLAS muon spectrometer upgrade
/ Alexopoulos, T. (Natl. Tech. U., Athens) ; Alviggi, M. (INFN, Naples ; Naples U.) ; Antonelli, M. (Frascati) ; Anulli, F. (INFN, Rome ; Rome U.) ; Arcangeletti, C. (Frascati) ; Bagnaia, P. (INFN, Rome ; Rome U.) ; Baroncelli, A. (INFN, Rome3 ; Rome III U.) ; Beretta, M. (Frascati) ; Bini, C. (INFN, Rome ; Rome U.) ; Bortfeldt, J. (CERN) et al.
A full-size prototype of a Micromegas precision tracking chamber for the upgrade of the ATLAS detector at the LHC Collider has been built between October 2015 and April 2016. This paper describes in detail the procedures used in constructing the single modules of the chamber in various INFN laboratories and the final assembly at the Laboratori Nazionali di Frascati (LNF). [...]
arXiv:1808.09752.-
2020-03-01 - 27 p.
- Published in : Nucl. Instrum. Methods Phys. Res., A 955 (2020) 162086
Fulltext: PDF;
|
|
5.
|
The Associative Memory System Infrastructures for the ATLAS Fast Tracker
/ Sotiropoulou, C L (Pisa U.) ; Maznas, I (Aristotle U., Thessaloniki) ; Citraro, S (Pisa U.) ; Annovi, A (INFN, Pisa) ; Ancu, L S (Geneva U.) ; Beccherle, R (INFN, Pisa) ; Bertolucci, F (Pisa U.) ; Biesuz, N (Pisa U.) ; Calabrò, D (INFN, Pavia) ; Crescioli, F (Paris U., VI-VII) et al.
The associative memory (AM) system of fast tracker (FTK) processor has been designed for the tracking trigger upgrade to the ATLAS detector at the Conseil Europeen Pour La Recherche Nucleaire large hadron collider. The system performs pattern matching (PM) using the detector hits of particles in the ATLAS silicon tracker. [...]
2017 - 7 p.
- Published in : IEEE Trans. Nucl. Sci. 64 (2017) 1248-1254
In : 20th IEEE-NPSS Real Time Conference, Padua, Italy, 5 - 10 Jun 2016, pp.1248-1254
|
|
6.
|
Highly parallelized pattern matching execution for the ATLAS experiment
/ Annovi, A (INFN, Pisa) ; Bertolucci, F (INFN, Pisa) ; Biesuz, N (Pisa U.) ; Calabro, D (INFN, Pavia) ; Calderini, G (Paris U., VI-VII) ; Citraro, S (Pisa U.) ; Crescioli, F (Paris U., VI-VII) ; Dimas, D (Prisma Electronics SA, Athens) ; Dell'Orso, M (Pisa U.) ; Donati, S (Pisa U.) et al.
The Associative Memory (AM) system of the Fast TracKer (FTK) processor has been designed to perform pattern matching using as input the data from the silicon tracker in the ATLAS experiment. The AM is the primary component of the FTK system and is designed using ASIC technology (the AM chip) to execute pattern matching with a high degree of parallelism. [...]
2016 - 3 p.
- Published in : 10.1109/NSSMIC.2015.7581789
In : 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, CA, USA, 31 Oct - 7 Nov 2015, pp.7581789
|
|
7.
|
|
8.
|
The Associative Memory Boards for the FTK Processor at ATLAS
/ Calabro, D (INFN Pavia, Italy) ; CIpriani, R (University of Pisa and INFN, Italy) ; Citraro, S (University of Pisa and INFN, Italy) ; Donati, S (University of Pisa and INFN, Italy) ; Giannetti, P (INFN Pisa, Italy) ; Lanza, A (INFN Pavia, Italy) ; Luciano, P (University of Pisa and INFN, Italy) ; Magalotti, D (University of Modena and Reggio Emilia, Italy) ; Piendibene, M (University of Pisa and INFN, Italy)
The Associative Memory (AM) system, the main part of the FastTracker (FTK) processor, is designed to perform pattern matching using the information of the silicon tracking detectors. It finds track candidates at low resolution that are seeds for the following step performing precise track fitting. [...]
ATL-DAQ-SLIDE-2013-853.-
Geneva : CERN, 2013 - 1 p.
Fulltext: ATL-DAQ-SLIDE-2013-853 - PDF; poster_IEEE-seoul_2013_v4 - PDF; External link: Original Communication (restricted to ATLAS)
In : 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seoul, Korea, 26 Oct - 2 Nov 2013
|
|
9.
|
Construction of the inner layer barrel drift chambers of the ATLAS muon spectrometer at the LHC
/ Livan, M (INFN, Pavia) ; Bagnaia, P (INFN, Pavia) ; Barisonzi, M (INFN, Pavia) ; Bini, C (INFN, Pavia) ; Calabro, D (INFN, Pavia) ; Caloi, R (INFN, Pavia) ; Cambiaghi, M (INFN, Pavia) ; Capradossi, G (INFN, Pavia) ; Cavallari, A (INFN, Pavia) ; Cecconi, V (INFN, Pavia) et al.
We have designed and built the facilities to assemble the inner layer of the precision tracking chambers (Monitored Drift Tubes, MDT) for the Muon Spectrometer of the ATLAS Experiment at LHC. This article describes in detail the tooling, the procedures and the quality control equipment used in the chambers assembly. [...]
2005
- Published in : Nucl. Instrum. Methods Phys. Res., A 546 (2005) 481-497
|
|
10.
|
The Pavia-Romal ATLAS MDT quality control system
/ Bini, C ; Calabro, D ; Cambiaghi, M ; Cardini, A ; Casani, S ; Ferrari, R ; Gaudio, G ; Giacalone, R ; Iuvino, G ; Lacava, F et al.
The physics at LHC imposes very severe requirements on the ATLAS muon detector, which translates into stringent requirements on drift-tubes wire tensioning, leak current, gas leak and wire positioning. In order to verify all these parameters prior to chamber construction, a dedicated quality control system was completely designed and built by our groups. [...]
2001
- Published in : Nucl. Instrum. Methods Phys. Res., A 461 (2001) 65-7
|
|