Report number
| arXiv:2206.07952 |
Title
| Picosecond Avalanche Detector — working principle and gain measurement with a proof-of-concept prototype |
Related title | Picosecond Avalanche Detector -- working principle and gain measurement with a proof-of-concept prototype
|
Author(s)
|
Paolozzi, L. (Geneva U. ; CERN) ; Munker, M. (Geneva U.) ; Cardella, R. (Geneva U.) ; Milanesio, M. (Geneva U.) ; Gurimskaya, Y. (Geneva U.) ; Martinelli, F. (Geneva U.) ; Picardi, A. (Geneva U. ; CERN) ; Rücker, H. (IHP, Frankfurt) ; Trusch, A. (IHP, Frankfurt) ; Valerio, P. (Geneva U.) ; Cadoux, F. (Geneva U.) ; Cardarelli, R. (Geneva U.) ; Débieux, S. (Geneva U.) ; Favre, Y. (Geneva U.) ; Fenoglio, C.A. (Geneva U.) ; Ferrere, D. (Geneva U.) ; Gonzalez-Sevilla, S. (Geneva U.) ; Kotitsa, R. (Geneva U. ; CERN) ; Magliocca, C. (Geneva U.) ; Moretti, T. (Geneva U.) ; Nessi, M. (Geneva U. ; CERN) ; Medina, A. Pizarro (Geneva U.) ; Iglesias, J. Sabater (Geneva U.) ; Saidi, J. (Geneva U.) ; Pinto, M. Vicente Barreto (Geneva U.) ; Zambito, S. (Geneva U.) ; Iacobucci, G. (Geneva U.) |
Publication
| 2022-10-20 |
Imprint
| 2022-06-16 |
Number of pages
| 15 |
In:
| JINST 17 (2022) P10032 |
DOI
| 10.1088/1748-0221/17/10/P10032
|
Subject category
| physics.ins-det ; Detectors and Experimental Techniques |
Abstract
| The Picosecond Avalanche Detector is a multi-junction silicon pixel detector based on a $\mathrm{(NP)_{drift}(NP)_{gain}}$ structure, devised to enable charged-particle tracking with high spatial resolution and picosecond time-stamp capability. It uses a continuous junction deep inside the sensor volume to amplify the primary charge produced by ionizing radiation in a thin absorption layer. The signal is then induced by the secondary charges moving inside a thicker drift region. A proof-of-concept monolithic prototype, consisting of a matrix of hexagonal pixels with 100 $\mu$m pitch, has been produced using the 130 nm SiGe BiCMOS process by IHP microelectronics. Measurements on probe station and with a $^{55}$Fe X-ray source show that the prototype is functional and displays avalanche gain up to a maximum electron gain of 23. A study of the avalanche characteristics, corroborated by TCAD simulations, indicates that space-charge effects due to the large primary charge produced by the conversion of X-rays from the $^{55}$Fe source limits the effective gain. |
Copyright/License
| preprint: (License: arXiv nonexclusive-distrib 1.0) publication: © 2022-2024 CERN (License: CC-BY-4.0) |