Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

Article
Report number arXiv:2203.08271 ; FERMILAB-CONF-22-148-T
Title The strong coupling constant: State of the art and the decade ahead
Author(s) d'Enterria, D. (CERN) ; Kluth, S. (Munich, Max Planck Inst.) ; Zanderighi, G. (Munich, Max Planck Inst.) ; Ayala, C. (Tarapaca U.) ; Benitez-Rathgeb, M.A. (Vienna U.) ; Bluemlein, J. (DESY, Zeuthen) ; Boito, D. (Vienna U. ; Sao Paulo U.) ; Brambilla, N. (Munich, Tech. U.) ; Britzger, D. (Munich, Max Planck Inst.) ; Camarda, S. (CERN) ; Cooper-Sarkar, A.M. (Oxford U.) ; Cridge, T. (University Coll. London) ; Cvetic, G. (CCTVal, Valparaiso) ; Brida, M. Dalla (CERN) ; Deur, A. (Jefferson Lab) ; Giuli, F. (CERN) ; Golterman, M. (San Francisco State U. ; Barcelona, Autonoma U.) ; Hoang, A.H. (Vienna U. ; U. Vienna (main)) ; Huston, J. (Michigan State U., East Lansing (main)) ; Jamin, M. (Vienna U. ; Heidelberg University,) ; Kotikov, A.V. (Dubna, JINR) ; Krivokhizhin, V.G. (Dubna, JINR) ; Kronfeld, A.S. (Fermilab) ; Leino, V. (Munich, Tech. U.) ; Lipka, K. (DESY, Zeuthen) ; Makela, T. (DESY, Zeuthen) ; Malaescu, B. (Paris U., VI-VII) ; Maltman, K. (York U., Canada ; Adelaide U.) ; Marzani, S. (Genoa U.) ; Mateu, V. (Salamanca U., IUFFyM ; CSIC, Madrid) ; Moch, S. (Hamburg U., Inst. Exp. Phys. II) ; Monni, P.F. (CERN) ; Nadolsky, P. (Southern Methodist U.) ; Nason, P. (Munich, Max Planck Inst. ; Milan Bicocca U.) ; Nesterenko, A.V. (Dubna, JINR) ; Perez-Ramos, R. (IPSA, Paris ; Paris, LPTHE) ; Peris, S. (Barcelona, IFAE) ; Petreczky, P. (Brookhaven) ; Pich, A. (Valencia U., IFIC) ; Rabbertz, K. (KIT, Karlsruhe, IAP) ; Ramos, A. (Valencia U., IFIC) ; Reichelt, D. (Durham U.) ; Rodriguez-Sanchez, A. (IJCLab, Orsay) ; Rojo, J. (Amsterdam U. ; Nikhef, Amsterdam) ; Saragnese, M. (DESY, Zeuthen) ; Sawyer, L. (Louisiana Tech. U., Ruston) ; Schott, M. (Mainz U.) ; Schumann, S. (Gottingen U.) ; Shaikhatdenov, B.G. (Dubna, JINR) ; Sint, S. (Trinity Coll., Dublin) ; Soyez, G. (IPhT, Saclay) ; Teca, D. (CCTVal, Valparaiso) ; Vairo, A. (Munich, Tech. U.) ; Vos, M. (Valencia U., IFIC) ; Waits, C. (Louisiana Tech. U., Ruston) ; Weber, J.H. (Humboldt U., Berlin) ; Wobisch, M. (Louisiana Tech. U., Ruston) ; Xie, K. (Pittsburgh U.)
Publication 2024-10-28
Imprint 2022-03-15
Number of pages 163
Note 135 pages, 45 figures. White paper for the "Energy Frontier Proceedings of the US Community Study on the Future of Particle Physics" (Snowmass 2021). Matches JPG published version
In: J. Phys. G 51, 9 (2024) pp.090501
In: 2021 Snowmass Summer Study, Seattle, WA, United States, 11 - 20 July 2021, pp.090501
DOI 10.1088/1361-6471/ad1a78
Subject category hep-lat ; Particle Physics - Lattice ; hep-ex ; Particle Physics - Experiment ; hep-ph ; Particle Physics - Phenomenology
Abstract Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant $\alpha_s$. The current $\mathcal{O}(1\%)$ uncertainty of the QCD coupling evaluated at the reference Z boson mass, $\alpha_s(m_Z) = 0.1179 \pm 0.0009$, is one of the limiting factors to more precisely describe multiple processes at current and future colliders. A reduction of this uncertainty is thus a prerequisite to perform precision tests of the Standard Model as well as searches for new physics. This report provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling. The current $\alpha_s(m_Z)$ world average is derived from a combination of seven categories of observables: (i) lattice QCD, (ii) hadronic $\tau$ decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) $e^+e^-$, (vi) e-p, and (vii) p-p collisions, and (viii) quarkonia decays and masses. We review the current status of each of these seven $\alpha_s(m_Z)$ extraction methods, discuss novel $\alpha_s$ determinations, and examine the averaging method used to obtain the world-average value. Each of the methods discussed provides a ``wish list'' of experimental and theoretical developments required in order to achieve the goal of a per-mille precision on $\alpha_s(m_Z)$ within the next decade.
Copyright/License preprint: (License: CC BY-NC-ND 4.0)
publication: © 2024 The Author(s) (License: CC-BY-4.0)



Corresponding record in: Inspire


 Record created 2022-04-12, last modified 2024-12-05


Fulltext:
jt - Download fulltextPDF
2203.08271 - Download fulltextPDF
Fulltext from Publisher:
Download fulltextPDF
External links:
Download fulltextFermilab Library Server
Download fulltexteConf