Nothing Special   »   [go: up one dir, main page]

login
A163644
Product of primes which do not exceed n and do not divide the swinging factorial n$ (A056040).
1
1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 5, 35, 7, 7, 7, 21, 21, 105, 5, 55, 55, 165, 33, 429, 143, 1001, 1001, 1001, 1001, 1001, 91, 1547, 221, 221, 221, 4199, 323, 323, 323, 2261, 2261, 24871, 24871, 572033, 572033, 572033, 81719, 408595, 24035, 312455
OFFSET
0,7
COMMENTS
a(n) = primorial(n) / rad(n$) = A034386(n) / A163641(n).
LINKS
EXAMPLE
a(20) = 105 because in the prime-factorization of 20$ the primes 3, 5 and 7 are missing and 3*5*7 = 105.
MAPLE
a := proc(n) local p; mul(p, p=select(isprime, {$1..n})
minus numtheory[factorset](n!/iquo(n, 2)!^2)) end:
MATHEMATICA
A034386[x_] := Apply[Times, Table[Prime[w], {w, 1, PrimePi[x]}]];
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f + 1, n - f]/f!];
A163641[0] = 1; A163641[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Join[{1}, Table[A034386[n]/A163641[n], {n, 1, 50}]] (* G. C. Greubel, Aug 01 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 02 2009
STATUS
approved