Nothing Special   »   [go: up one dir, main page]

login
A053091
F^3-convex polyominoes on the honeycomb lattice by number of cells.
1
1, 3, 5, 6, 9, 11, 10, 15, 18, 14, 21, 23, 18, 30, 29, 21, 33, 35, 31, 39, 41, 30, 42, 54, 35, 51, 53, 38, 66, 54, 42, 63, 65, 60, 69, 70, 43, 75, 90, 54, 81, 83, 63, 93, 89, 62, 90, 95, 84, 99, 90, 77, 105, 126, 74, 111, 113, 60, 138, 119, 91, 126, 125, 108
OFFSET
1,2
COMMENTS
The polyominoes are counted up to translations but not rotations and reflections. Thus, the unique domino with two cells is counted three times for its three orientations. - Michael Somos, Jun 21 2012
REFERENCES
Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux decales oscillants. These de Doctorat. Laboratoire de Recherche en Informatique, Universite Paris-Sud XI, France.
Alain Denise, Christoph Durr and Fouad Ibn-Majdoub-Hassani. Enumeration et generation aleatoire de polyominos convexes en reseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics, pages 222-234, 1997.
FORMULA
Expansion of F^3(1, 1, q, 1) in powers of q where F^3(x, y, q, t) is the generating function defined in the FPSAC97 article. - Michael Somos, Jun 20 2012
G.f.: sum_{n >= 1} sum{d|n} b_d^2 * x^d * (1 + sign(n-d)), where b_0 = 0 and
b_i = x^binomial(i, 2) * sum_{k=1}^{i} x^(-binomial(i, 2)) for i >= 1 [corrected by Michael Somos, Jun 21 2012]
EXAMPLE
x + 3*x^2 + 5*x^3 + 6*x^4 + 9*x^5 + 11*x^6 + 10*x^7 + 15*x^8 + 18*x^9 + ...
+---+
| o | a(1) = 1
+---------------+
| o o | o | o | a(2) = 3
| | o | o |
+-------------------------------+
| o | o o | | o | o |
| o o | o | o o o | o | o | a(3) = 5
| | | | o | o |
+-------------------------------------------+
| | o | o | o | | |
| o o o o | o | o | o o | o o | o o | a(4) = 6
| | o | o | o | o o | o o |
| | o | o | | | |
+-------------------------------------------+
- Michael Somos, Jun 21 2012
PROG
(PARI) {a(n) = local(m = 4*n); if( n<1, 0, (-1)^n / 2 * polcoeff( sum( k=1, m, k * kronecker( 2, k) * if( k%4 == 3, x^k, x^(3*k)) / (1 + x^(4*k)), O(x^m)), m - 1))} /* Michael Somos, Jun 20 2012 */
(PARI) {a(n) = if( n<1, 0, polcoeff( sum( i=1, n, x^i * (1 + x^i) / (1 - x^i) * ( sum( k=1, i, x^((i - k) * (i + k - 1)/2), x * O(x^(n - i))))^2 ), n))} /* Michael Somos, Jun 21 2012 */
CROSSREFS
Sequence in context: A263654 A122194 A225005 * A367499 A324701 A047271
KEYWORD
nonn
AUTHOR
STATUS
approved