Nothing Special   »   [go: up one dir, main page]

login
A030228
Number of chiral polyominoes with n cells.
6
0, 0, 0, 0, 2, 6, 25, 88, 335, 1215, 4534, 16823, 63159, 237679, 900341, 3423201, 13073163, 50095285, 192599091, 742576616, 2870584814, 11122879867, 43191525139, 168046317330, 654998425237, 2557224396342, 9999083912711, 39153000738695, 153511081627903
OFFSET
0,5
COMMENTS
For n>0, A000105(n) + a(n) = A000988(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae, Jan 05 2006
For n>0, each chiral pair is counted as one. - Robert A. Russell, Feb 23 2022
LINKS
John Mason, Table of n, a(n) for n = 0..50 (terms 1..45 from Andrew Howroyd, 46..48 from Robert A. Russell)
D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
FORMULA
For n>0, a(n) = A000988(n) - A000105(n). - Graeme McRae, Jan 05 2006
a(n) = A006749(n) + A006747(n) + A144553(n). - Andrew Howroyd, Dec 04 2018
a(n) = A000105(n) - A030227(n). - Robert A. Russell, Feb 02 2019
For n>0, (A000988(n) - A030227(n)) / 2. - Robert A. Russell, Feb 23 2022
EXAMPLE
For a(4)=2, the two chiral tetrominoes are XXX and XX .
X XX
MATHEMATICA
A000105 = Cases[Import["https://oeis.org/A000105/b000105.txt", "Table"], {_, _}][[All, 2]];
A000988 = Cases[Import["https://oeis.org/A000988/b000988.txt", "Table"], {_, _}][[All, 2]];
a[n_] := A000988[[n]] - A000105[[n + 1]];
Array[a, 45] (* Jean-François Alcover, Sep 08 2019, after Graeme McRae *)
CROSSREFS
Cf. A000988 (oriented), A000105 (unoriented), A030227 (achiral).
Cf. A006747, A006749, A144553 (subcategories).
Sequence in context: A073545 A103063 A220191 * A066317 A027104 A019048
KEYWORD
nonn
EXTENSIONS
Terms a(23) and beyond from Andrew Howroyd, Dec 04 2018
Name edited by Robert A. Russell, Feb 03 2019
a(0)=0 corrected by John Mason, Jan 12 2023
STATUS
approved