Nothing Special   »   [go: up one dir, main page]

login
A027377
Number of irreducible polynomials of degree n over GF(4); dimensions of free Lie algebras.
22
1, 4, 6, 20, 60, 204, 670, 2340, 8160, 29120, 104754, 381300, 1397740, 5162220, 19172790, 71582716, 268431360, 1010580540, 3817733920, 14467258260, 54975528948, 209430785460, 799644629550, 3059510616420
OFFSET
0,2
COMMENTS
Apart from initial terms, exponents in expansion of A065419 as a product zeta(n)^(-a(n)).
Number of aperiodic necklaces with n beads of 4 colors. - Herbert Kociemba, Nov 25 2016
REFERENCES
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1666 (terms 0..200 from T. D. Noe)
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
A. Pakapongpun and T. Ward, Functorial Orbit counting, JIS 12 (2009) 09.2.4, example 3.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
FORMULA
a(n) = Sum_{d|n} mu(d)*4^(n/d)/n.
G.f.: k=4, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) = A054661(n) + 3 * A054660(n). - Andrey Zabolotskiy, Dec 17 2020
a(n) = 2 * (A054664(n) + A054660(n)). - Andrey Zabolotskiy, Dec 19 2020
MAPLE
A027377 := proc(n) local d, s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*4^(n/d); od; RETURN(s/n); fi; end;
MATHEMATICA
a[n_] := Sum[MoebiusMu[d]*4^(n/d), {d, Divisors[n]}] / n; a[0] = 1; Table[a[n], {n, 0, 23}](* Jean-François Alcover, Nov 29 2011 *)
mx=40; f[x_, k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i, {i, 1, mx}]; CoefficientList[Series[f[x, 4], {x, 0, mx}], x] (* Herbert Kociemba, Nov 25 2016 *)
PROG
(PARI) a(n)=if(n, sumdiv(n, d, moebius(d)<<(2*n/d))/n, 1) \\ Charles R Greathouse IV, Nov 29 2011
CROSSREFS
Column k=4 of A074650.
Sequence in context: A088015 A374259 A375362 * A048789 A038069 A274425
KEYWORD
nonn,nice,easy
STATUS
approved