Nothing Special   »   [go: up one dir, main page]

login
A006206
Number of aperiodic binary necklaces of length n with no subsequence 00, excluding the necklace "0".
(Formerly M0317)
29
1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, 492, 750, 1164, 1791, 2786, 4305, 6710, 10420, 16264, 25350, 39650, 61967, 97108, 152145, 238818, 374955, 589520, 927200, 1459960, 2299854, 3626200, 5720274, 9030450, 14263078
OFFSET
1,5
COMMENTS
Bau-Sen Du (1985/1989)'s Table 1 has this sequence, denoted A_{n,1}, as the second column. - Jonathan Vos Post, Jun 18 2007
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.
Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See 2nd line of Table 1 (p. 6).
Michael Baake, Joachim Hermisson, and Peter Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A 30(9) (1997), 3029-3056.
Latham Boyle and Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv:1608.08220 [math-ph], 2016.
D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, arXiv:hep-th/9609128, 1996.
D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett B., 393 (1997), 403-412.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. 3 (2000), #00.1.5.
M. Conder, S. Du, R. Nedela, and M. Skoviera, Regular maps with nilpotent automorphism group, Journal of Algebraic Combinatorics, 44(4) (2016), 863-874. ["... We note that the sequence h_n above agrees in all but the first term with the sequence A006206 in ..."]
Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem, Bull. Austral. Math. Soc. 31 (1985), 89-103. Corrigendum: 32 (1985), 159.
Bau-Sen Du, A Simple Method Which Generates Infinitely Many Congruence Identities, arXiv:0706.2421 [math.NT], 2007.
Larry Ericksen, Primality Testing and Prime Constellations, Šiauliai Mathematical Seminar, 3(11), 2008; mentions this sequence.
R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], 2009-2011; sequence gamma_{1,j}^(A).
A. Pakapongpun and T. Ward, Functorial Orbit counting, J. Integer Seqs. 12 (2009), #09.2.4; example 21.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs. 4 (2001), #01.2.1.
FORMULA
Euler transform is Fibonacci(n+1): 1/((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)^2 * (1 - x^6)^2 * ...) = 1/(Product_{n >= 1} (1 - x^n)^a(n)) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + ...
Coefficients of power series of natural logarithm of the infinite product Product_{n>=1} (1 - x^n - x^(2*n))^(-mu(n)/n), where mu(n) is the Moebius function. This is related to Fibonacci sequence since 1/(1 - x^n - x^(2*n)) expands to a power series whose terms are Fibonacci numbers.
a(n) = (1/n) * Sum_{d|n} mu(n/d) * (Fibonacci(d-1) + Fibonacci(d+1)) = (1/n) * Sum_{d|n} mu(n/d) * Lucas(d). Hence Lucas(n) = Sum_{d|n} d*a(d).
a(n) = round((1/n) * Sum_{d|n} mu(n)*phi^(n/d))). - David Broadhurst
G.f.: Sum_{n >= 1} -mu(n) * log(1 - x^n - x^(2*n))/n.
a(n) = (1/n) * Sum_{d|n} mu(d) * A001610(n/d - 1), n > 1. - R. J. Mathar, Mar 07 2009
For n > 2, a(n) = A060280(n) = A031367(n)/n.
EXAMPLE
Necklaces are: 1, 10, 110, 1110; 11110, 11010, 111110, 111010, ...
MAPLE
with(numtheory): with(combinat):
A006206 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) end do; sum/n; end proc:
MATHEMATICA
a[n_] := Total[(MoebiusMu[n/#]*(Fibonacci[#+1] + Fibonacci[#-1]) & ) /@ Divisors[n]]/n;
(* or *) a[n_] := Sum[LucasL[k]*MoebiusMu[n/k], {k, Divisors[n]}]/n; Table[a[n], {n, 100}] (* Jean-François Alcover, Jul 19 2011, after given formulas *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)
(Haskell)
a006206 n = sum (map f $ a027750_row n) `div` n where
f d = a008683 (n `div` d) * (a000045 (d - 1) + a000045 (d + 1))
-- Reinhard Zumkeller, Jun 01 2013
(Sage)
z = PowerSeriesRing(ZZ, 'z').gen().O(30)
r = (1 - (z + z**2))
F = -z*r.derivative()/r
[sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020
CROSSREFS
Cf. A006207 (A_{n,2}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.
Cf. A001461 (partial sums), A000045, A008683, A027750.
Cf. A125951 and A113788 for similar sequences.
Sequence in context: A013979 A107458 A274142 * A060280 A095719 A153952
KEYWORD
nonn,easy,nice
STATUS
approved