OFFSET
1,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Bytautats and D. J. Klein, Alkane Isomere Combinatorics: Stereostructure enumeration and graph-invariant and molecylar-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
FORMULA
a(n+1) = (p(n+1)+s((n+1)/2)+s(n/4))/2, where p(n)=A005627(n) and s(n)=A000625(n) (eq. (23) in the Robinson et al. reference). - Emeric Deutsch, Nov 21 2004
MAPLE
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k], k=0..n-j), j=1..n))/n od: p[0]:=1: for n from 0 to 50 do > p[n+1]:=sum(s[k]*p[n-2*k], k=0..floor(n/2)) od:seq(p[j], j=0..45): P:=proc(n) if floor(n)=n then p[n] else 0 fi end:S:=proc(n) if floor(n)=n then s[n] else 0 fi end:t:=n->(P(n)+S(n/2)+S((n-1)/4))/2: seq(t(n), n=1..40); # here s[n]=A000625(n), p[n]=A005627(n). - Emeric Deutsch, Nov 21 2004
MATHEMATICA
nmax = 37;
s[0] = s[1] = 1; s[_] = 0;
Do[s[n + 1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n - j - k], {k, 0, n - j}], {j, 1, n}])/n, {n, 1, nmax}];
p[0] = 1;
Do[p[n + 1] = Sum[s[k]*p[n - 2 k], {k, 0, Floor[n/2]}]; a[n + 1] = (p[n + 1] + s[(n + 1)/2] + s[n/4])/2, {n, 0, nmax}];
a[n_] := s[n] - p[n];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by Emeric Deutsch, Nov 21 2004
STATUS
approved