Nothing Special   »   [go: up one dir, main page]

login
A005629
Number of achiral trees with n nodes.
(Formerly M0677)
1
1, 1, 1, 2, 3, 5, 7, 14, 21, 40, 61, 118, 186, 355, 567, 1081, 1755, 3325, 5454, 10306, 17070, 32136, 53628, 100704, 169175, 316874, 535267, 1000524, 1698322, 3168500, 5400908, 10059823, 17211368, 32010736, 54947147, 102059572, 175702378
OFFSET
1,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Bytautats and D. J. Klein, Alkane Isomere Combinatorics: Stereostructure enumeration and graph-invariant and molecylar-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
FORMULA
a(n+1) = (p(n+1)+s((n+1)/2)+s(n/4))/2, where p(n)=A005627(n) and s(n)=A000625(n) (eq. (23) in the Robinson et al. reference). - Emeric Deutsch, Nov 21 2004
MAPLE
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k], k=0..n-j), j=1..n))/n od: p[0]:=1: for n from 0 to 50 do > p[n+1]:=sum(s[k]*p[n-2*k], k=0..floor(n/2)) od:seq(p[j], j=0..45): P:=proc(n) if floor(n)=n then p[n] else 0 fi end:S:=proc(n) if floor(n)=n then s[n] else 0 fi end:t:=n->(P(n)+S(n/2)+S((n-1)/4))/2: seq(t(n), n=1..40); # here s[n]=A000625(n), p[n]=A005627(n). - Emeric Deutsch, Nov 21 2004
MATHEMATICA
nmax = 37;
s[0] = s[1] = 1; s[_] = 0;
Do[s[n + 1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n - j - k], {k, 0, n - j}], {j, 1, n}])/n, {n, 1, nmax}];
p[0] = 1;
Do[p[n + 1] = Sum[s[k]*p[n - 2 k], {k, 0, Floor[n/2]}]; a[n + 1] = (p[n + 1] + s[(n + 1)/2] + s[n/4])/2, {n, 0, nmax}];
a[n_] := s[n] - p[n];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
CROSSREFS
Sequence in context: A114625 A046808 A097799 * A028304 A324840 A316475
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Emeric Deutsch, Nov 21 2004
STATUS
approved