OFFSET
4,3
COMMENTS
In other words, the number of almost-triangulations of an n-gon modulo the dihedral action.
Equivalently, the number of edges of the (n-3)-dimensional associahedron modulo the dihedral action.
The dissection will always be composed of one quadrilateral and n-4 triangles. - Andrew Howroyd, Nov 24 2017
See Theorem 30 of Bowman and Regev (although there appears to be a typo in the formula - see Maple code below). - N. J. A. Sloane, Dec 28 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 4..200
D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
MAPLE
C:=n->binomial(2*n, n)/(n+1);
T30:=proc(n) local t1; global C;
if n mod 2 = 0 then
t1:=(1/4-(3/(4*n)))*C(n-2) + (3/8)*C(n/2-1) + (1-3/n)*C(n/2-2);
if n mod 4 = 0 then t1:=t1+C(n/4-1)/4 fi;
else
t1:=(1/4-(3/(4*n)))*C(n-2) + (1/2)*C((n-3)/2);
fi;
t1; end;
[seq(T30(n), n=4..40)]; # N. J. A. Sloane, Dec 28 2012
MATHEMATICA
c = CatalanNumber;
T30[n_] := Module[{t1}, If[EvenQ[n], t1 = (1/4 - (3/(4*n)))*c[n - 2] + (3/8)*c[n/2 - 1] + (1 - 3/n)*c[n/2 - 2]; If[Mod[n, 4] == 0, t1 = t1 + c[n/4 - 1]/4], t1 = (1/4 - (3/(4*n)))*c[n-2] + (1/2)*c[(n-3)/2]]; t1];
Table[T30[n], {n, 4, 40}] (* Jean-François Alcover, Dec 14 2017, after N. J. A. Sloane *)
PROG
(PARI) \\ See A295419 for DissectionsModDihedral()
{ my(v=DissectionsModDihedral(apply(i->if(i>=3&&i<=4, y^(i-3) + O(y^2)), [1..25]))); apply(p->polcoeff(p, 1), v[4..#v]) } \\ Andrew Howroyd, Nov 24 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 24 2017
STATUS
approved