Nothing Special   »   [go: up one dir, main page]

login
A003449
Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation and reflection.
(Formerly M2687)
4
1, 1, 3, 7, 24, 74, 259, 891, 3176, 11326, 40942, 148646, 543515, 1996212, 7367075, 27294355, 101501266, 378701686, 1417263770, 5318762098, 20011847548, 75473144396, 285267393358, 1080432637662, 4099856060808, 15585106611244, 59343290815356
OFFSET
4,3
COMMENTS
In other words, the number of almost-triangulations of an n-gon modulo the dihedral action.
Equivalently, the number of edges of the (n-3)-dimensional associahedron modulo the dihedral action.
The dissection will always be composed of one quadrilateral and n-4 triangles. - Andrew Howroyd, Nov 24 2017
See Theorem 30 of Bowman and Regev (although there appears to be a typo in the formula - see Maple code below). - N. J. A. Sloane, Dec 28 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
MAPLE
C:=n->binomial(2*n, n)/(n+1);
T30:=proc(n) local t1; global C;
if n mod 2 = 0 then
t1:=(1/4-(3/(4*n)))*C(n-2) + (3/8)*C(n/2-1) + (1-3/n)*C(n/2-2);
if n mod 4 = 0 then t1:=t1+C(n/4-1)/4 fi;
else
t1:=(1/4-(3/(4*n)))*C(n-2) + (1/2)*C((n-3)/2);
fi;
t1; end;
[seq(T30(n), n=4..40)]; # N. J. A. Sloane, Dec 28 2012
MATHEMATICA
c = CatalanNumber;
T30[n_] := Module[{t1}, If[EvenQ[n], t1 = (1/4 - (3/(4*n)))*c[n - 2] + (3/8)*c[n/2 - 1] + (1 - 3/n)*c[n/2 - 2]; If[Mod[n, 4] == 0, t1 = t1 + c[n/4 - 1]/4], t1 = (1/4 - (3/(4*n)))*c[n-2] + (1/2)*c[(n-3)/2]]; t1];
Table[T30[n], {n, 4, 40}] (* Jean-François Alcover, Dec 14 2017, after N. J. A. Sloane *)
PROG
(PARI) \\ See A295419 for DissectionsModDihedral()
{ my(v=DissectionsModDihedral(apply(i->if(i>=3&&i<=4, y^(i-3) + O(y^2)), [1..25]))); apply(p->polcoeff(p, 1), v[4..#v]) } \\ Andrew Howroyd, Nov 24 2017
CROSSREFS
A diagonal of A295634.
Sequence in context: A148716 A148717 A148718 * A258308 A148719 A138541
KEYWORD
nonn
EXTENSIONS
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 24 2017
STATUS
approved