OFFSET
0,3
COMMENTS
Approaches 1.5028368...^(2^n), see A077496. Row sums of A065329 as square array. - Henry Bottomley, Oct 29 2001. Also row sum of square array A073345 (AK).
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
T. K. Moon, Enumerations of binary trees, types of trees and the number of reversible variable length codes, submitted to Discrete Applied Mathematics, 2000.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
David Wasserman, Table of n, a(n) for n = 0..12 [Shortened file because terms grow rapidly: see Wasserman link below for an additional term]
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, alternative link.
Mayfawny Bergmann, Efficiency of Lossless Compression of a Binary Tree via its Minimal Directed Acyclic Graph Representation. Rose-Hulman Undergraduate Mathematics Journal: Vol. 15 : Iss. 2, Article 1. (2014).
Henry Bottomley, Illustration of initial terms
I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz. 21 (1937), 36-39; addendum 21 (1937), 153.
I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162. [Annotated scanned copy]
Samuele Giraudo, The combinator M and the Mockingbird lattice, arXiv:2204.03586 [math.CO], 2022.
C. Lenormand, Arbres et permutations II, see p. 6
David Wasserman, Table of n, a(n) for n = 0..13
Eric Weisstein's World of Mathematics, Binary Tree
FORMULA
a(n+1) = 2*a(n)*(a(0) + ... + a(n-1)) + a(n)^2.
a(n+1) = a(n)^2 + a(n) + a(n)*sqrt(4*a(n)-3), if n > 0.
a(n) = A003095(n+1) - A003095(n) = A003095(n)^2 - A003095(n) + 1. - Henry Bottomley, Apr 26 2001; offset of LHS corrected by Anindya Bhattacharyya, Jun 21 2013
From Peter Bala, Feb 03 2017: (Start)
a(n) = Product_{k = 1..n} A213437(k).
Conjecture: a(n) = -a(n-2)^3 + a(n-1)^2 + 3*a(n-1)*a(n-2) + 2*a(n-2)^2 + 2*a(n-1) - 4*a(n-2). - Boštjan Gec, Oct 10 2024
EXAMPLE
G.f. = 1 + x + 3*x^2 + 21*x^3 + 651*x^4 + 457653*x^5 + ... - Michael Somos, Jun 02 2019
MAPLE
s := proc(n) local i, j, ans; ans := [ 1 ]; for i to n do ans := [ op(ans), 2*(add(j, j=ans)-ans[ i ])*ans[ i ]+ans[ i ]^2 ] od; RETURN(ans); end; s(10);
MATHEMATICA
a[0] = 1; a[n_] := a[n] = 2*a[n-1]*Sum[a[k], {k, 0, n-2}] + a[n-1]^2; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, May 16 2012 *)
a[ n_] := If[ n < 2, Boole[n >= 0], With[{u = a[n - 1], v = a[n - 2]}, u (u + v + u/v)]]; (* Michael Somos, Jun 02 2019 *)
PROG
(PARI) {a(n) = if( n<=1, n>=0, a(n-1) * (a(n-1) + a(n-2) + a(n-1) / a(n-2)))}; /* Michael Somos, 2000 */
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def a(n): return 1 if n <= 1 else a(n-1) * (a(n-1) + a(n-2) + a(n-1)//a(n-2))
print([a(n) for n in range(10)]) # Michael S. Branicky, Nov 10 2022 after Michael Somos
CROSSREFS
KEYWORD
nonn,easy,core,nice
AUTHOR
EXTENSIONS
Minor edits by Vaclav Kotesovec, Oct 04 2014
STATUS
approved