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Abstract 

Most conventional diagnostic methods for fault diagnosis in rolling bearings are able to work only for the case 

of stationary operating conditions (constant speed and load), whereas, bearings often work at time-varying 

conditions. Some methods have been proposed for damage detection in bearings working under time-varying 

speed conditions. However, their application might increase the instrumentation cost because of providing a 

phase reference signal. Furthermore, some methods such as order tracking methods can only be applied for 

limited speed variations. 

In this study, a novel combined method for fault detection in rolling bearings based on cointegration is proposed 

for the development of fault features which are sensitive to the presence of defects while in the same time they 



are insensitive to changes in the operational conditions. The method makes use solely of the measured vibration 

signals and does not require any additional measurements while it can identify defects even for considerable 

speed variations. The signals acquired during run-up condition are decomposed into zero-mean modes called 

intrinsic mode functions using the Performance Improved Ensemble Empirical Mode Decomposition method. 

Then, the cointegration, which is finding stationary linear combination of some non-stationary time series, is 

applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by 

applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of 

the healthy bearing signals are utilized to construct a separating hyperplane using the one-class support vector 

machine method. Eventually the proposed method was applied to vibration signals measured on an experimental 

bearing test rig. The results confirm that the method can be successfully applied to distinguish between healthy 

and faulty bearings even if the shaft speed changes dramatically. 
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1. Introduction 

Many research efforts have been focused on fault diagnosis and detection of rolling bearings, since they 

constitute one the most important elements of rotating machinery. Most of the diagnostic methods that have 

been developed up to date can be applied for the case of stationary working conditions only (constant speed and 

load). Randall and Antoni [1] treat broadly the background of some powerful diagnostic methods for roller 

bearings in a very useful tutorial paper. However, bearings often work at time-varying conditions such as wind 



turbine supporting bearing, mining excavator bearing, run-up and run-down processes. Damage identification 

for bearings working under non-stationary operating conditions, especially for early/small defects, requires the 

use of appropriate techniques, which are generally different from those used for the case of stationary 

conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational 

condition variations. So far, some diagnostic techniques have been proposed for time-varying conditions. 

Among them, the order tracking method has been widely used for cases of speed variations. But there are still 

two main drawbacks of the order tracking method: limitation on the speed variation and the additional 

measurement costs introduced by providing the phase signal. The method can effectively detect faults when the 

speed variation is limited and an extra device, such as an encoder or a tachometer has to be used to provide a 

phase reference signal. Thus, many studies suggest the improvement of the order tracking method [2-7] and its 

development so that it can be applied tacho-less [8-9]. Li et al. [10] presented a method based on order tracking 

and Teager-Huang Transform (THT) for detection of bearing faults in gearbox under non-stationary run-up of 

gear drives. Then, Li [11] combined computed order tracking technique with bi-spectrum analysis. In both 

methods a speed transducer was used to measure rotational speed. Urbanek et al. [12] introduced the method 

called averaged instantaneous power spectrum as a time–frequency representation of selected cyclic 

components and tested on a selected case of wind turbine drive train fault. However, they believed that 

averaging can be applied when dealing with limited fluctuations of operational conditions. Cocconcelli et al. 

[13] applied another method for damage detection of roller bearing in direct-drive motors. They used the 

marginal time integration of the averaged Short Ttime Fourier transform (STFT) spectrogram as a simple 

indicator of damage. As the AC motor was controlled by a drive, they were able to use the speed profile in their 

methodology. They also applied the spectral kurtosis and the energy distribution for damage identification of a 

brushless AC motor using the angular velocity [14].  



However, for the discussed methods, recording the speed requires additional instrumentation, which 

increases the measurement and the computational costs and adjustment problems.  

In another approach, Zimroz et al. [15] used a two dimensional space made of the peak-to-peak amplitude 

of vibration signal and the generated power for diagnosis of the main bearing of a wind turbine working under 

non-stationary conditions. However, in most applications, there is no additional data that can be measured 

during the process (as e.g. the generated power) apart from the measured acceleration signals. And it should be 

kept in mind that for the case of wind turbines, the speed variation of the bearings is limited and called 

fluctuation (less than 30% [16]) in comparison with some time-varying conditions such as fast run up 

conditions. 

Cointegration is a statistical concept which can be used for testing the existence of statistically significant 

relation between two or more non-stationary time series. It is looking for linear stationary combinations within 

non-stationary time series. Engle and Granger [17] formulated one of the first tests for cointegration. Johanson 

proposed a maximum likelihood approach for finding stationary linear combinations of non-stationary 

variables, which have the same order of integration [18]. Applications of cointegration to finance may be found 

in [19-23]. Cointegration has been recently applied for structural health monitoring (SHM) purposes to remove 

the non-stationarity produced by environmental variations such as temperature, wind and humidity [24-27]. 

Cross and Worden discussed the application of cointegration to engineering data [25]. Cross et al. [26] 

successfully applied cointegration for SHM purposes, where it was used to detect the introduction of damage 

in a composite plate. Antoniadou et al. applied the Hilbert-Huang and Teager- Kaiser transforms to extract 

relevant information from the acquired signals and subsequently used cointegration to remove the non-

stationarity produced by variation of the environmental conditions [24]. Worden et al. demonstrated how a 



multi-resolution approach to cointegration can enhance the damage assessment capability for the case of a 

composite plate [27]. 

The Teager-Kaiser energy based feature extraction method proposed by Tabrizi et al [39] is able to 

successfully identify the early damage level of roller bearings operating in stationary conditions. In this study 

a new approach is proposed to detect the state of rolling bearings operating in conditions of time-varying speed. 

Contrary to the afore-mentioned methods, we collected only acceleration signals and it does not require any 

additional measurements and/or instrumentation. Furthermore, it works even for cases when the speed changes 

rapidly (for example in a run-up start). The methodology is introduced in two parts, signal analysis and pattern 

recognition. The signal acquired is divided into segments and each segment is broken down into some 

elementary modes the Intrinsic Mode Functions (IMFs) using the Performance Improved Ensemble Empirical 

Mode Decomposition (PIEEMD) proposed by some of the authors of this study for stationary operating 

condition [28]. Then, three dimensional feature vectors are created by applying the Teager-Kaiser Energy 

Operator (TKEO) to the cointegrated residuals of the first three IMFs. The feature vectors obtained from healthy 

bearing signals are further utilized as input to construct a separating hyperplane for a one-class Support Vector 

Machine (SVM). The SVM can be trained to categorize signals coming from healthy and faulty bearings. It is 

shown that the proposed method can successfully identify signals from healthy and faulty bearings. 

The rest of the paper is organized as follows: 

Signal analysis and pattern recognition (one-class SVM) methods are introduced in section 2.1 and 2.2, 

respectively. The whole process for roller element bearing fault detection is explained in 2.3. The experimental 

setup and the data-acquisition process are presented in section 3. The application of the new approach to the 

acquired data together with some results is discussed in section 4. Eventually, the paper concludes with a 

discussion in section 5. 



2.1 .Signal analysis  

In order to extract signal features each collected signal is divided into segments. Then, several methods are 

applied. The signal analysis techniques are detailed below. 

2.1.1. Segmentation  

The first step of the method proposed is to divide the whole signal into 𝑛 segments with equal length as 

follows: 

 

x(𝑡) = ∑ 𝑥𝑧(𝑡)

𝑛

𝑧=1

 

(1) 

where 𝑧 = 1, … , 𝑛 is the number of segments. Each segment should include many data points to carry the fault 

detection information required. On the other hand, the number of segments should be high to extract stationarity 

(as it will be discussed in section 2.1.3).  In this study each collected signal is divided into 5 segments (𝑛 = 5) 

so that each segment includes 6000 data points and is demonstrated that is appropriate for fault detection 

purpose. 

2.1.2. The application of the Ensemble empirical mode decomposition (EEMD) 

In this section each segment is decomposed into IMFs. The empirical mode decomposition (EMD) is an 

adaptive, data driven technique to decompose a signal into several IMFs [29].  In order to solve the mode mixing 

problem of the EMD, which is defined as any IMF consisting of oscillations of dramatically disparate scales, 

often caused by intermittency of the driving mechanisms, the Ensemble empirical mode decomposition 



(EEMD) is a technique recently proposed [30]. The EEMD decomposition steps of each segment can be 

summarized as follows  

a) First random white noise signals are added to  each segment 𝑥𝑧(𝑡) as shown below 

 

𝑥𝑛𝑧𝑗(𝑡) = 𝑥𝑧(𝑡) + 𝐴𝑚𝑝 ∙ 𝑛𝑧𝑗(𝑡)       𝑗 = 1,2, … , 𝑀 

  (2) 

where 𝐴𝑚𝑝 is the amplitude of added white noise and 𝑀 is a pre-determined number of trials and different 

random white noise is added each time.  

 

b) The obtained signals (𝑥𝑛𝑧𝑗(𝑡))  are decomposed into IMFs using the EMD as detailed below: 

 

𝑥𝑛𝑧𝑗(𝑡) = ∑ 𝑐𝑖𝑧𝑗

𝑁𝑗

𝑖=1

(𝑡) + 𝑟𝑁𝑗
(𝑡) 

  (3) 

where 𝑐𝑖𝑧𝑗 represents the i-th IMF of the j-th trial, 𝑟𝑁𝑗
 denotes the residue of j-th trial and 𝑁𝑗 is the number of 

IMFs within the  j-th trial. 

 

c) The ensemble means of the obtained IMFs , 𝑐𝑖𝑗𝑧, are calculated: 

 



𝐼𝑀𝐹𝑖𝑧(𝑡) = (∑ 𝑐𝑖𝑗𝑧

𝑀

𝑗=1

) 𝑀⁄  

  (4) 

where   𝑖 = 1,2, … , 𝐿, 𝑀 is the minimum number of IMFs among all the trials and z is segment number. Thus, 

for example, 𝐼𝑀𝐹11, … , 𝐼𝑀𝐹𝐿1 are the L IMFs obtained by decomposing the first segment and 𝐼𝑀𝐹12, … , 𝐼𝑀𝐹𝐿2 

are the L IMFs obtained by decomposing the second segment and so on.  

Adding noise aims to affect the extrema of the original signal so that the intermittency of the components will 

be removed. In order to improve the performance of the EEMD, an adaptive method called Performance 

Improved EEMD (PIEEMD) was proposed by Tabrizi et al. [28] to determine the appropriate amplitude of 

added noise. After adding a random white noise, by applying the signal to noise ratio (SNR) definition (see 

equation (5)), the amplitude value for each data point of a segment is obtained using equation (6). The SNR is 

considered as a constant predetermined value (SNR=10) in equation (6). 

  

𝑆𝑁𝑅 = 20 log  (Signal amplitude 𝑁𝑜𝑖𝑠𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒⁄ )  

(5) 

           

𝐴𝑚𝑝𝑧𝑗(𝑡) = 10−(
𝑆𝑁𝑅
20

) (𝑥𝑧(𝑡)/𝑛𝑧𝑗(𝑡)) 

           (6) 

where z corresponds to the segment , z = 1,2…n  and j=1,2.., M  is the number of trials. 



2.1.3. Cointegration 

The cointegration technique is used to find linear stationary combination of the corresponding IMFs 

(obtained in section 2.1.2.). Two or more non-stationary time series (with the same integrated order) are said to 

be cointegrated if a linear combination of them is stationary. A signal/stochastic process 𝒚𝒕 is said to be 

integrated of order d (𝒚𝒕~𝑰(𝒅)), if it becomes stationary after d times differencing. Thus, a time series 𝒚𝒕  will 

be integrated of order 1, if its first difference is stationary (∆𝒚𝒕~𝑰(𝟎)). The order of integration can be estimated 

by a stationarity test using the Augmented Dickey-Fuller (ADF) test [31]. 

Now we will form new signals 𝑌𝑖𝑡  from the obtained IMFs. A signal 𝑌𝑖𝑡  is made of n non-stationary IMFs 

(𝐼𝑀𝐹𝑖1, … , 𝐼𝑀𝐹𝑖𝑛) obtained from the n signal segments xn (see equation (4)). 

 

𝑌𝑖𝑡 =  (
𝐼𝑀𝐹𝑖1

⋮
𝐼𝑀𝐹𝑖𝑛

) 

(7) 

where 𝑖 = 1, … , 𝑚  is the order of IMFs and 𝑚 is the number of IMFs selected. For example, when 𝑖 = 1, it 

means that 𝑌1𝑡  is made of the first IMFs of all n segments (𝐼𝑀𝐹11, … , 𝐼𝑀𝐹1𝑛) and when 𝑖 = 1, 𝑌2𝑡 is made of 

second IMFs of all segments(𝐼𝑀𝐹21, … , 𝐼𝑀𝐹2𝑛). 

The series 𝑌𝑖𝑡  is said to be cointegrated with r cointegrating vectors (0 < r < n) if there exists a (n×r) matrix 𝛽 

such that the cointegrating residual 𝑢 is 0 integrated. 

 

 



𝛽′𝑌𝑖𝑡 =  (
𝛽1

′𝑌𝑖𝑡

⋮
𝛽𝑟

′ 𝑌𝑖𝑡

) =  (

𝑢𝑖1

⋮
𝑢𝑖𝑟

)   

(8) 

Where 𝛽′ is introduced as transpose of  𝛽. 

 

The cointegration test based on Johansen procedure [18], tests for the existence of r, 0 ≤ r < n, cointegrating 

vectors (𝛽1, … , 𝛽𝑟). It determines which of the cointegrating vectors creates the most stationary linear 

combination. 

In order to find the cointegrating vectors, first we establish the residuals of the following regressions: 

 

∆𝑌𝑖𝑡 =  ∑ Φ1𝑡′∆𝑌𝑖(𝑡−𝑡′) + 𝑈̂𝑖𝑡

𝑝

𝑡′=1

 

(9) 

 

𝑌𝑖(𝑡−1) = ∑ Φ2𝑡′∆𝑌𝑖(𝑡−𝑡′) + 𝑉̂𝑖𝑡

𝑝

𝑡′=1

 

(10) 

where 𝑝 denotes the model order, 𝑈̂𝑡 and 𝑉̂𝑡 denote the residuals and Φ1 and Φ2 are multiplication matrices. 

Then, the cointegrating vectors are determined as eigenvectors of the following eigenvalue problem: 

 

|𝜆𝑖𝑆𝑖11 − 𝑆𝑖10𝑆𝑖00
−1𝑆𝑖01| = 0 

(11) 



where  𝑆𝑖00 =
1

𝑇
∑ 𝑈̂𝑖𝑡𝑈̂𝑖𝑡

′𝑇
𝑡=1  , 𝑆𝑖01 =

1

𝑇
∑ 𝑈̂𝑖𝑡𝑉̂𝑖𝑡

′𝑇
𝑡=1  , 𝑆𝑖10 =

1

𝑇
∑ 𝑉̂𝑖𝑡𝑈̂𝑖𝑡

′𝑇
𝑡=1  , 𝑆𝑖11 =

1

𝑇
∑ 𝑉̂𝑖𝑡𝑉̂𝑖𝑡

′𝑇
𝑡=1   are the sample 

covariance matrices. 

The eigenvector corresponding to the largest eigenvalue is the most stationary cointegration vector. The test 

statistic (see equation (12)) is applied to test the hypothesis.  

 

Tstat𝑖  (𝑟0) = −𝑇 ∑ ln (1 − 𝜆̂𝑖𝑞

𝑅

𝑞=𝑟0+1

) 

(12) 

where 𝑖 = 1, … , 𝑚  is the order of IMFs and 𝑚 is the number of IMFs selected, 𝜆̂𝑖𝑞 denotes the estimated 

eigenvalues and 𝑅 is the number of eigenvalues obtained from equation (11). 

P-value is defined as the right-tail probabilities of the test statistics. Thus, it is the probability under the 

assumption of the null hypothesis. The null hypothesis is rejected if the P-value is less that a pre-determined 

significance level, which is usually set to 5% (0.05). The critical values, tabulated by Johansen [18], were 

calculated based on 5% P-value. In this case, the null hypothesis is rejected, when the trace statistic value 

become less than critical value.  

First the null hypothesis (H0(𝑟0 = 0)) is tested against the alternative hypothesis (H1(𝑟0 > 0)). If the null 

hypothesis is accepted then there are no cointegrating vectors. If the null hypothesis is rejected then there is at 

least one cointegration vector and the test is continued to test H0(𝑟0 = 1) against H1(𝑟0 > 1). There exists only 

one cointegrating vector, if the null hypothesis is accepted. Otherwise, it is concluded that there are at least two 

cointegrating vectors. The procedure is continued until the null hypothesis is accepted. 



2.1.4. Teager-Kaiser Energy Operator (TKEO) 

The energy of a signal is the sum of squared absolute value of the signal over a time, which is not the 

instantaneous summed energy. Kaiser observed that a second order differential equation is the energy required 

to generate a simple sinusoidal signal varies with both amplitude and frequency [32]. In order to estimate the 

instantaneous energy of a signal x(t), Teager-Kaiser Energy Operator (TKEO) is used as an energy tracking 

operator as follows (Maragos, 1993):  

𝛹[𝑥(𝑡)] = 𝐴2 = 𝑥̇2(𝑡) − 𝑥(𝑡) 𝑥̈(𝑡) 

(13) 

where )(tx and )(tx are the first and the second time derivatives of x(t), respectively. 

For a discrete signal, using differences to approximate differentiation, the TKEO can be developed as [33]: 

𝜓[𝑢𝑖𝑗(𝑡)] = 𝑢𝑖𝑗
2(𝑡) − 𝑢𝑖𝑗(𝑡 + 1) 𝑢𝑖𝑗(𝑡 − 1) 

           (14) 

where 𝑡 is the discrete time index. 

As at any instant, only three consecutive values are needed to estimate the instantaneous TKEO, it is adaptive 

to the instantaneous changes in signals and is able to resolve transient events. 

In the method proposed the TKEO is applied to the 𝑟 stationary cointegrated residuals(𝑢𝑖1 … 𝑢𝑖𝑟) obtained 

in section 2.1.3. The sum would be a value and is obtained as follows: 

 

𝑇𝐾𝐸𝑖𝑗 = ∑ 𝜓(𝑢𝑖𝑗) 

(15) 

where 𝑖 = 1, … , 𝑚  is the number of IMFs selected and  𝑗 = 1, … , 𝑟 is the number of cointegrated residuals. 



2.1.5. Creating feature vectors 

Feature vectors used as input for the consequent pattern recognition method are formed based on the values 

calculated in equation (15). In this study three IMFs are selected, in order to have enough information and on 

the other hand less dimensional feature vectors [34]. 

 

𝐹𝑗 = [𝑇𝐾𝐸1𝑗 𝑇𝐾𝐸2𝑗 𝑇𝐾𝐸3𝑗] 

(16) 

where 𝑗 = 1, … , 𝑟  is the number of cointegrated residuals. For example, 𝐹1 is the three dimensional feature 

vector created using the first residual and 𝐹2 is the feature vector created using the second residual. Thus, for 

each signal we find r feature vectors. 

Then, the feature vectors obtained are normalized by dividing them to their Euclidean norm as follows: 

 

𝐹𝑉𝑛𝑗 = [𝑇𝐾𝐸1𝑗/𝑛𝑜𝑟𝑚(𝑇𝐾𝐸1𝑗) 𝑇𝐾𝐸2𝑗/𝑛𝑜𝑟𝑚(𝑇𝐾𝐸2𝑗) 𝑇𝐾𝐸3𝑗/𝑛𝑜𝑟𝑚(𝑇𝐾𝐸3𝑗)]  

(17) 

Which can be represented as follows so that each dimension would be a value: 

𝐹𝑉𝑛𝑗 = [𝐹𝑉1𝑗 𝐹𝑉2𝑗 𝐹𝑉3𝑗] 

(18) 



2.2. Pattern recognition  

In this part a pattern recognition method is applied in order to recognize between healthy and faulty bearing 

or rather the signals that come from them. For the purpose the one class support vector machine method is 

applied. The method is briefly described below. 

2.2.1. One-class support vector machine  

The support vector machine (SVM) introduced by Vapnik is a relatively new computational learning 

statistical PR method based on statistical learning theory [35].  It is applied for recognizing between two classes- 

healthy and faulty signals. The method requires a relatively small training samples for the learning phase. Thus, 

the method accommodates the fact that acquiring a sufficient number of faulty signals is not applicable in 

practice, and it has been successfully used in a number of fault diagnosis problems. The one-class SVM 

  

Insert [Figure 2- Classification by one-class SVM (from [36])] somewhere here 

 

proposed by Scholkopf et al. is a powerful technique which constructs a separating hyperplane between two 

classes of patterns using data from one of the classes only. It classifies the patterns from the other class as 

outliers [37]. It constructs a hyperplane around the data, such that its distance to the origin (called Margin) is 

maximal among all possible hyperplanes and can be adopted for anomality detection, as shown in Figure 2. 

For each residual, the feature vectors 𝐹𝑉𝑛𝑗 obtained from the healthy bearing signals (using equation (18)) 

are used to construct the hyperplane. As there are a number of features for each residual, we use l 𝐹𝑉𝑛𝑗𝑘 vectors 

as features, where 𝑗 denotes residual number and 𝑘 = 1, … , 𝑙  is the feature number used for training.   



The SVM can be also applied in case of non-linear classification by mapping the data onto a high dimensional 

feature space (𝜙(𝐹𝑉𝑛𝑗𝑘)), where the linear classification is then possible. In real problems, an exact line 

dividing the data is usually difficult to obtain, so, by introducing the slack variable (𝜉𝑘) in equation (19) and 

ignoring few outlier data points a smooth boundary can be created. 

The Margin is defined as [37]: 

 

𝑀𝑎𝑟𝑔𝑖𝑛 = 𝜌 ‖𝑤‖⁄   

(19) 

where 𝑤 and 𝜌 are the weight vector and the offset parameterizing the hyperplane. 

In order to separate the data set from the origin, the following quadratic optimization problem must be solved 

[37]: 

 

minimize (
1

2
‖𝑤‖2 +

1

𝜐𝑙
∑ 𝜉𝑘

𝑙

𝑘=1

− 𝜌) 

(20) 

 

subject to  {
𝑦𝑘 (𝑤 ∙ 𝜙(𝐹𝑉𝑛𝑗𝐾)) ≥ 𝜌 − 𝜉𝑘

𝜉𝑘 ≥ 0
    

 

where 𝑗 = 1, … , 𝑟 is the number of residuals, 𝑘 = 1, … , 𝑙 is the features used to train the model,  𝑦𝑘  is a vector 

includes the label of each feature (+1 for the features of healthy bearing signals and -1 for the features of faulty 

bearing signals) , 𝜉𝑘 is the slack variable and measuring the distance between the hyperplane and the examples 



that laying in the wrong side of the hyperplane (Figure 3), 𝜐 is the regularization parameter and represents an 

upper bound on the fraction of outliers (training errors) and a lower bound on the fraction of support vectors 

(the nearest features to the hyperplane) with respect to the number of training samples. It is a variable taking 

values between 0 and 1 that monitors the effect of outliers (hardness and softness of the boundary around data). 

By applying a kernel function as the inner product of mapping functions (𝐾(𝐹𝑉𝑛𝑗𝑘, 𝐹𝑉𝑛𝑗𝑘 ,) = (𝜙(𝐹𝑉𝑛𝑗𝑘) ∙

𝜙(𝐹𝑉𝑛𝑗𝑘,)), it is not necessary to explicitly evaluate mapping in the feature space, where , 𝑘 , = 1, … , 𝑙 . Various 

kernel functions can be used, such as linear, polynomial or Gaussian RBF (Radial basis function).  In this study, 

RBF kernel function, a common function in fault detection problems, is applied: 

 

𝐾(𝐹𝑉𝑛𝑗𝑘 , 𝐹𝑉𝑛𝑗𝑘,) = 𝑒𝑥𝑝 (−𝛾‖𝐹𝑉𝑛𝑗𝑘 − 𝐹𝑉𝑛𝑗𝑘,‖
2

)       

(21) 

Insert [Figure 3- The slack variables 𝜉𝑖 and support vectors (data points with circles around them) (from 

[38]).] somewhere here 

Introducing Lagrange multipliers the dual problem is formulated as: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
∑ 𝛼𝑘𝛼𝑘 ,

𝑙

𝑘,𝑘,=1

𝐾(𝐹𝑉𝑛𝑗𝑘, 𝐹𝑉𝑛𝑗𝑘 ,) 

(22) 

 

subject to  {
0 ≤ 𝛼𝑘 ≤

1

𝜐𝑙

∑ 𝛼𝑘
𝑙
𝑘=1 = 1

 



If 𝜐 approaches 0, the upper boundaries on the Lagrange multipliers tend to infinity, so the second inequality 

constraint in (equation (22)) becomes void. Furthermore, the penalty for errors becomes infinite, so the 

algorithm returns to the corresponding hard margin algorithm. 

The feature vectors (FV) which achieve positive, non-zero multipliers called support vectors 𝑆𝑉𝑗𝑖 where 

𝑖 corresponds the number of support vectors (SV). Then, offset is calculated as follows: 

 

𝜌 = (𝑤 ∙ 𝜙(𝑆𝑉𝑗𝑖)) = ∑ 𝛼𝑘

𝑙

𝑘=1

𝐾(𝐹𝑉𝑛𝑗𝑘 , 𝑆𝑉𝑗𝑖) 

(23) 

Accordingly the non-linear decision function for labelling new samples 𝐹𝑉𝑛𝑗 is represented as follows: 

 

𝑓(𝐹𝑉𝑛𝑗) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑘

𝑙

𝑘=1

𝐾(𝐹𝑉𝑛𝑗𝑘 , 𝐹𝑉𝑛𝑗) − 𝜌) 

           (24) 

The classification parameters (𝛾 and 𝜐), which must be determined, are optimized by using cross validation 

method. 

2.3. The whole methodology  

Eventually the method suggested can be summarized as shown in Figure 3. 

Insert [Figure 3- The cointegration based methodology suggested in this study for roller bearing fault 

detection working in operational variation condition] somewhere here 



3. Method validation and verification 

For the purpose of demonstration and validation of the suggested methodology, experimental data (only 

acceleration signal) was obtained from the test rig assembled at the DASM Group in the Department of 

Mechanical and Aerospace Engineering of Strathclyde University which is shown in Figures 4(a) and (b). As 

discussed in section 2.3 we do not require any data except for the acceleration signals. The test rig consists of 

a shunt DC motor (1 hp and 2000 rpm), bearing assembly and a mechanical loading system. In order to acquire 

acceleration signals, the MONITRAN accelerometer (MTN/1120 model) was fixed to the bearing supports by 

magnetic coupling. The bearings used in the experiment were SKF deep grooves 6308.  Two bearing conditions 

were considered in this study healthy and inner race faulty. The fault was considered a small notch on the inner 

ring created using spark erosion to simulate a flaking or spalling fault. The width was considered less than 1mm 

and the depth was almost 100 microns. 20 signals were acquired for each bearing condition. Signals were 

sampled at 1.3 kHz and each had a 25 seconds time length. For all the acceleration signals acquired, the run up 

time varying operating condition was considered by varying the speed manually from 150 to 1500 rpm. Thus, 

speed variation considered is significant with different speed rates to demonstrate that the results are 

independent to speed rate. The faults considered here were very small notches. Thus, the primary interest of 

this study is to detect very small faults at a rather early stage. Two acquired signals during run-up condition 

from the healthy and damaged bearings are displayed in Figure 5. 

The process of the method follows the steps detailed above in section 2.3. 



Insert [Figure 4. a,b) The test rig used to collect the signals coming from healthy and faulty bearings.] 

somewhere here 

Insert [Figure 5. Two acquired signals during run-up condition a) from the healthy bearing b) from the damaged 

bearing.] somewhere here 

4. Results and discussion 

In this section we present and discuss some results from the application of the suggested method. Firstly the 

results of the application of the Teager-Kaiser energy (TKE) based feature extraction method proposed by 

Tabrizi et al. [39] are provided in order to test the identifiability of the measured signals. Subsequently the 

method suggested in this study (cointegration based method) will be applied to the same signals in order to see 

the effect of the cointegration residuals on the resulting classification. In the TKE based method [39], a signal 

is decomposed into IMFs using the performance improved EEMD (PIEEMD) and then the TKE operator is 

applied to the first three IMFs to obtain three dimensional feature vectors. After normalizing, one obtains three 

feature vectors called 𝑻𝑲𝑬𝒏𝟏, 𝑻𝑲𝑬𝒏𝟐 and 𝑻𝑲𝑬𝒏𝟑. The results of applying TKE based method to the signals 

collected in time-varying operating condition (run-up) are shown in Figure 6. The Figure presents all the three 

features on a 3d plot (Figure 6(a)) and different combinations of the features 𝑻𝑲𝑬𝒏𝟏, 𝑻𝑲𝑬𝒏𝟐 and 

𝑻𝑲𝑬𝒏𝟑(Figure 6 (b), (c) and (d)). Although this method is known to be a powerful tool for detection of small 

faults, it can be seen that for the case of non-stationary operational conditions the feature vector points are not 

well separated and it is impossible to determine the condition of the bearing. Thus in this case for a variable 

motor speed the above method fails to provide reliable fault detection.  

Insert [Figure 6. The normalized TKE using the combined method consists of PIEEMD (as the decomposition 

technique) and TKEO (to create feature vectors).] somewhere here 



 

Secondly, it is investigated if and to what extent the cointegration based method proposed in this study 

(section 2.3) is able to recognize the state of the bearings. As detailed in the section 2.3, first, each signal is 

divided into five segments so that each segment includes 6000 data points. Then, each segment is decomposed 

by the PIEEMD algorithm. The results for healthy and faulty signals are given in Figures 7 and 8. The 

cointegration procedure is then carried out for all the five IMFs corresponding to each segment to obtain one or 

more cointegrating vectors.  

The results of Johansen test for cointegration for the healthy bearing signal (displayed in Figure 5(a)) are 

given in Table 1. From Table 1, the results regarding the existence of cointegration relations among a set of 

IMFs are given. The table shows that there are four linear combinations of the IMFs labeled under the null ranks 

column (i.e r0, r1...r3). The other columns give information whether each of these linear combinations indicates 

cointegration among the IMFs or not. The null hypothesis of the test suggests that there is no cointegration 

among the IMFs. In this table the h values given in column 2 of Table 1 are all equal to 1, which rejects the null 

hypothesis. Consequently, the problem is full ranked since all the null hypothesis are rejected. The right-tail 

probabilities Prt (i.e P-values given in column 5) are considerably lower than the significance level (which is 

0.05). This indicates that there is enough evidence of the stationarity of the cointegrating vector (since there is 

a cointegration relation among the IMFs).  

Insert [Figure 7. The IMFs of the first segment of the healthy signal (Figure 5(a)) obtained performance 

improved EEMD (PIEEMD).] somewhere here 

Insert [Figure 8. The IMFs of the first segment of the faulty signal (Figure 5(b)) obtained using performance 

imperoved EEMD (PIEEMD).] somewhere here 



Insert [Table 1. The results of cointegration for the first IMFs of five segments of the healthy signal shown in 

Figure 5(a)] somewhere here 

Insert [Figure 9. The cointegrating vectors obtaind from first IMFs (𝐼𝑀𝐹11 … 𝐼𝑀𝐹15) of the five segments 

of the signal shown in Figure 5(a).] somewhere here 

Insert [Figure 10. The TKEO applied to the cointegrated residuals obtained from (𝐼𝑀𝐹11 … 𝐼𝑀𝐹15), 

(𝐼𝑀𝐹21 … 𝐼𝑀𝐹25) and (𝐼𝑀𝐹31 … 𝐼𝑀𝐹35), respectively.] somewhere here 

The values of the other parameters in Table 1 (test statistics values, critical values and Eigenvalues) give 

information about the stationarity for each cointegration residual. The Eigenvalues are arranged in ascending 

order corresponding to the order of null ranks (r0, r1, r2 and r3). The four stationary cointegration residuals are 

shown in Figure 9. 

Eventually, the TKEO is applied to each cointegration residual (equation (14)), and the results are shown in 

Figure 10. The three dimensional feature vectors are created according to equation (15). After normalizing (see 

equation (16)), the feature vectors used in the classification process are obtained (equation (17)). Thus, for each 

signal, we are in possession of one three dimensional feature vector. 

The visualization of the 3-dimensional feature vectors and their projections corresponding to the healthy and 

faulty bearings for each cointegration residual are shown in Figures 11 to 14. A very good separation between 

the healthy and the faulty classes obtained from the first and the second cointegrated residuals can be 

appreciated. For each cointegration relation, there are 20 feature vectors developed for each class. From the 

class of healthy bearings, 80% of the feature vectors (i.e 16 out of 20) are used as training input for the one-

class SVM method (see section 2.2.1). Consequently, the constructed hyper-plane is utilized for determining  

 



Insert [Figure 11. The three dimensional feature vectors obtained from first cointegrated residual.] somewhere 

here 

Insert [Figure 12. The three dimensional feature vectors obtained from the second cointegrated residual.] 

somewhere here 

Insert [Figure 13. The three dimensional feature vectors obtained from the third cointegrated residual.] 

somewhere here 

Insert [Figure 14. The three dimensional feature vectors obtained from the fourth cointegrated residual.] 

somewhere here 

 

the condition of the new test vectors. The test sample contains the remaining 20% of the healthy and all faulty 

feature vectors. Since, the signals were collected in different speed variations, the healthy signals acquired are 

different, which means that the training samples (80% of the healthy features) and healthy test samples 

(remaining 20% of healthy features) are not similar.  

The classification rate is shown in the Table 2. It can be seen that for all the cases (all cointegration residuals), 

the success rates for the training and the test samples are 100% when the first and the second cointegration 

residuals are used, as this result was expected based on Figures 11 and 12.  However, when the third or the 

fourth cointegration residuals are used the features vectors from the test sample are not well separated, but the 

success rate for the training sample is still 100%. When using the third cointegration residual, there are two 

false-positive cases (i.e two healthy samples that are miss-classified as faulty). When the fourth cointegration 

residual is used   four out of the 24 samples were miss-labeled (one false -positive case and three false-negative 

ones (i.e three faulty FV are misclassified as healthy). False-positive yields to implement a maintenance 



procedure whereas consequence of false-negative is to run the machine when it is faulty and has to be stopped 

to be repaired. 

Insert [Table 2. The classification results for different cointegrated residuals] somewhere here 

The margin obtained for each classification is also indicated in Table 2. It can be seen that using the feature 

vectors obtained from the first or the second residuals vector provides  a more reliable hyperplane, as they have 

higher margin values, while the margin values for the third and fourth residuals fall down and accordingly the 

classification rate deteriorates.  

Since the method proposed is anomaly detection (one-class SVM), all data acquired from faulty bearing was 

used to test the method. In order to demonstrate the ability of the method, new signals (20 signals) were collected 

from a new healthy bearing and based on the results obtained the method recognized perfectly the state new 

healthy bearing. 

On the basis of the results discussed above it can be appreciated that the implementation of the method 

proposed in this study, a very good/ perfect recognition of the bearing state can be achieved, even when the 

shaft speed changes significantly. 

 

5. Conclusions 

This study proposes a roller element fault detection method, which is based on the statistical concept of 

cointegration. The cointegration is used for the purposes of detecting the stationary content of the signal by 

finding the linear stationary combinations of its elements. The signal is first divided into segments and each 

segment is broken down into elementary modes, the IMFs, using the Performance Improved Ensemble 



Empirical Mode Decomposition (PIEEMD). Subsequently, three dimensional feature vectors are created by 

applying the Teager-Kaiser Energy Operator (TKEO) to the cointegrated residuals of the first three IMFs. 

The suggested method can work for constant operational speed but unlike most other fault detection methods 

for roller element bearings it can distinguish between healthy and faulty bearings even when the speed is 

significantly changing. Most roller element fault detection methods that can operate in speed varying conditions 

require additional instrumentation like e.g a tachometer or encoder. Some of these methods, like the order 

tracking one, can detect the damage when the speed variation is limited. The method suggested in this study 

does not put any constraints on the speed variation and can work even when the speed changes rapidly (for 

example in a run-up start).   This is a very important merit of the proposed method since most rotating 

machineries operate with time varying speed and the application of this method provides a procedure for online 

fault monitoring, without putting the machinery into parts.  

This study validates the suggested method by applying it on the data obtained from an experimental setup 

operating in run-up condition. The suggested method uses a training pattern recognition procedure in order to 

recognize between healthy and faulty bearing signals. 80% of the acquired signals are used for training purposes 

and the rest are used as a testing sample.  

The results given in the previous paragraph show a 100% correct classification for the signals from the 

testing sample and 100% correct classification for the testing sample as well when the most stationary 

cointegration residuals (the first and the second one) are used to obtain the feature vectors. When the residuals 

with lower/weaker stationarity are used, the results deteriorate slightly but still the majority of the signals are 

correctly recognized.  

The suggested methodology can be further developed for the purposes of qualification (fault type 

recognition) and eventually quantification purposes using the multi class SVM. But even in its proposed state 



as a detection method this is the first methodology of such kind which can operate under time varying speed 

(run-up) without requiring additional instrumentation.  
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Figure captions 

Figure 1. Classification by one-class SVM (from [37]). 

Figure 2. The slack variables 𝜉𝑖 and support vectors (data points with circles around them) (from [38]). 

Figure 3. The cointegration based methodology suggested in this study for roller bearing fault detection 

working in operational variation condition. 

 

Figure 4. a,b) The test rig used to collect the signals coming from healthy and faulty bearings.  

Figure 5. Two acquired signals during run-up condition a) from the healthy bearing b) from the damaged 

bearing. 

Figure 6. The normalized TKE using the combined method consists of PIEEMD (as the decomposition 

technique) and TKEO (to create feature vectors). 

Figure 7. The IMFs of  the first segment of the healthy signal (Figure 5(a)) obtained performance improved 

EEMD (PIEEMD). 

Figure 8. The IMFs of  the first segment of the faulty signal (Figure 5(b)) obtained using performance 

imperoved EEMD (PIEEMD). 

Figure 9. The cointegrating vectors obtaind from first IMFs (𝐼𝑀𝐹11 … 𝐼𝑀𝐹15) of the five segments of the 

signal shown in Figure 5(a). 

Figure 10. The TKEO applied to the cointegrated residuals obtained from (𝐼𝑀𝐹11 … 𝐼𝑀𝐹15), 

(𝐼𝑀𝐹21 … 𝐼𝑀𝐹25) and (𝐼𝑀𝐹31 … 𝐼𝑀𝐹35), respectively. 

Figure 11. The three dimensional feature vectors obtained from first cointegrated residual. 

Figure 12. The three dimensional feature vectors obtained from the second cointegrated residual. 

Figure 13. The three dimensional feature vectors obtained from the third cointegrated residual. 



Figure 14. The three dimensional feature vectors obtained from the fourth cointegrated residual. 

 

Table captions 

Table 1. The results of cointegration for the first IMFs of five segments of the healthy signal shown in Figure 

5(a) 

Table 2. The classification results for different cointegrated residuals 

  



 
Figure 1. Classification by one-class SVM (from [37]).  

  



 
Figure 2. The slack variables 𝜉𝑖  and support vectors (data points with circles around them) (from [38]). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The cointegration based methodology suggested in this study for roller bearing fault detection working in 

operational variation condition. 
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Figure 4. a,b) The test rig used to collect the signals coming from healthy and faulty bearings. 
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Figure 5. Two acquired signals during run-up condition a) from the healthy bearing b) from the damaged bearing. 
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Figure 6. The normalized TKE using the combined method consists of PIEEMD (as the decomposition technique) 

and TKEO (to create feature vectors). 
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Figure 7. The IMFs of the first segment of the healthy signal (Figure 5(a)) obtained performance improved EEMD 

(PIEEMD). 
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Figure 8. The IMFs of the first segment of the faulty signal (Figure 5(b)) obtained using performance imperoved 

EEMD (PIEEMD). 
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Figure 9. The cointegrating residuals obtaind from first IMFs (𝐼𝑀𝐹11 … 𝐼𝑀𝐹15 ) of the five segments of the 

signal shown in Figure 5(a). 
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Figure 10. The TKEO applied to the cointegrated residuals obtained from (𝐼𝑀𝐹11 … 𝐼𝑀𝐹15), 

(𝐼𝑀𝐹21 … 𝐼𝑀𝐹25) and (𝐼𝑀𝐹31 … 𝐼𝑀𝐹35), respectively. 
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Figure 11. The three dimensional feature vectors obtained from first cointegrated residual. 

 

0.8
0.85

0.9
0.95

1

0
0.2

0.4
0.6

0.8
0.05

0.1

0.15

 

FV1

The FV of the IMFs 1,2,3

FV2

 

F
V

3

Healthy samples

Faulty samples

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.1

0.2

0.3

0.4

0.5

0.6

The FV of the IMFs 1 and 2

FV1

F
V

2

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

The FV of the IMFs 1 and 3

FV1

F
V

3

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

The FV of the IMFs 2 and 3

FV2

F
V

3



 

 
Figure 12. The three dimensional feature vectors obtained from the second cointegrated residual. 
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Figure 13. The three dimensional feature vectors obtained from the third cointegrated residual. 
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Figure 14. The three dimensional feature vectors obtained from the fourth cointegrated residual. 

 

0.9
0.92

0.94
0.96

0.98
1

0.1
0.2

0.3
0.4

0.5
0.04

0.06

0.08

0.1

0.12

 

FV1

The FV of the IMFs 1,2,3

FV2

 

F
V

3

Healthy samples

Faulty samples

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The FV of the IMFs 1 and 2

FV1

F
V

2

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

The FV of the IMFs 1 and 3

FV1

F
V

3

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

The FV of the IMFs 2 and 3

FV2

F
V

3

 

  



Table 1. The results of cointegration for the first IMFs of five segments of the healthy signal shown in Figure 5(a) 

Null ranks 

 r 

Null hypothesis  

h 
Test statistics Critical values 

Right-tail 

probabilities Prt 
Eigenvalue r 

0 1 24466.1675   69.8187   0.0010 0.5753 

1 1 19328.1531   47.8564   0.0010 0.5604 

2 1 14397.1423 29.7976   0.0010 0.5589 

3 1 9486.5483   15.4948   0.0010 0.5565 

 

  

  



Table 2. The classification results for different cointegrated residuals 

Cointegrating  

vectors 
training test Success ratio Margin 

1 100 100 24/24 1.00428 

2 100 100 24/24 1.00272 

3 100 91.7 22/24 0.998041 

4 100 83.3 20/24 0.999554 

 

 


