Accelerated dysbiosis of gut microbiota during aggravation of 1 DSS-induced colitis by a butyrate-producing bacterium 2 Qianpeng Zhang, Yanqiu Wu, Jing Wang, Guojun Wu, Wenmin Long, Zhengsheng 3 Xue, Linghua Wang, Xiaojun Zhang, Xiaoyan Pang, Yufeng Zhao, Liping Zhao and 4 Chenhong Zhang 5 6 **Supplementary Information** 7 **Files in this Data Supplement** 8 Supplementary results 9 Supplementary Table S1 10 Supplementary Table S2 11 Supplementary Table S3 12 Supplementary Table S4 13 Supplementary Table S5 14 Supplementary Figure S1 15 Supplementary Figure S2 16 Supplementary Figure S3 17 Supplementary Figure S4 18 Supplementary Figure S5 19 Supplementary Figure S6 20 Supplementary Figure S7 21

22 Supplementary Figure S8

24

25 Supplementary Results

26 Summary of sequencing on 16S rRNA gene V3-V4 region

- On average, 16415 ± 3148 (mean \pm s.d.) high-quality reads were
- obtained for each sample. A total of 716 operational taxonomic units
- 29 (OTUs) were delineated at a threshold of 97% identity using the UPARSE
- pipeline. Only one OTU (OTU641) was identified as Anaerostipes sp.,
- 31 which was detected only in the samples from mice inoculated with BPB5.
- 32 Of the total reads, 99.4% were assigned to 9 different phyla, including
- Firmicutes (45.1%), Bacteroidetes (41.6%), Proteobacteria (7.8%) and
- 34 Verrucomicrobia (3.1%).
- 35

36 Supplementary Figures and Tables

Supplementary Table S1 Changes in fermentation products (mM) of BPB5
after growth for 24 h in YCFAGSC medium

Strain	BPB5
Acetate	-2.73
Propionate	-0.52
lsobutyrate	-0.08
Butyrate	10.81
lsovalerate	-0.08
Valerate	-0.04
CO ₂	0.50
H ₂	0.70

Growth activity		Substrat	es							
Positive growth (OD>0.4)	glucose, su galactose, D oligosacchari	ucrose, raffinose, t)-fructose, fructo-c des, arabinose, m	rehalose, sorbierit ligosaccharide, ga annitol, L-sorbose							
Weak growth (0.4>OD>0.15)		starch, xylose,	glycerol.							
No growth (OD<0.15)	cellobiose	, maltose, melibios lextrin, ribose, esc	se, L-rhamnose, x ulin, nutriose							
Supplementary	Table S3 Impact	able S3 Impact of BPB5 on microbiota in heal <i>P</i> - value ^a								
BPB5_2d	vs.PBS_2d	(0.04978							
BPB5_4d	<i>vs</i> .PBS_4d	(0.30800							
BPB5_7d	<i>vs</i> .PBS_7d	C	0.05091							
a: PERMA samples f	NOVA test base ollowed by FDR	d on Bray-Curtis adjustment.	distance of							
Supplementary	y Table S4 Impac microbiota in DS	t of DSS and BP S-induced colitis	B5 on segregatic mice							
		P - value ^a	Class error ^b							
DSS_2d <i>vs</i> . Pl	BS_2d	0.00147	0							
DSS_4d <i>vs</i> . Pl	3S_4d	0.00147	0 0							
DSS_7d <i>vs</i> . Pl	BS_7d	0.00396								
DSS+BPB5_20	d <i>v</i> s. DSS_2d	0.00147	0							
DSS+BPB5_40	5_4d <i>v</i> s. DSS_4d 0.00147									
DSS+BPB5_70	7d vs. DSS_7d 0.13960 ND									
a: PERMANOV followed by FD	A test based on B R adjustment.	ray-Curtis distanc	e of samples							
b: Leave one ou	ut cross validation	class error rate o	f Random Forest							

	Day 4 ^d																				→		→				
	Day 2°																						→				
	ď		-0.45	-0.46	-0.51 #	-0.48	-0.30	-0.28	-0.41	-0.42	-0.37	-0.36	-0.39	-0.36	-0.46	-0.40	-0.27	-0.24	-0.36	-0.28	-0.23	-0.29	-0.20	-0.37	-0.15	-0.09	-0.21
	<i>P</i> - value ^a		0.00036 * ↓	0.00036 * ↓	0.00036 * ↓	0.00036 * ↓	0.00149 * ↓	0.00036 * ↓	0.00748 * ↓	0.01141 * ↓	0.00066 * ↓	0.00036 * ↓	0.00036 * ↓	0.00036 * ↓	0.00036 * ↓	0.00036 * ↓	0.00036 * ↓	0.00036 * ↓	0.00036 * ↓	0.00149 * ↓	0.00506 * ↓	1	0.0172 * ↓	0.23559	0.71649	0.00506 * ↓	0_00729 * J
	iments r)	Genus						Lachnospiracea_incertae_sedis	Barnesiella					Rikenella	Alloprevotella	Alistipes								Alistipes			
	Taxonomical assign (RDP Classifie	Family	Porphyromonadaceae	Porphyromonadaceae	Porphyromonadaceae	Lachnospiraceae	Lachnospiraceae	Lachnospiraceae	Porphyromonadaceae	Porphyromonadaceae	Porphyromonadaceae		Porphyromonadaceae	Rikenellaceae	Prevotellaceae	Rikenellaceae	Lachnospiraceae	Lachnospiraceae	Lachnospiraceae	Lachnospiraceae	Porphyromonadaceae	Prevotellaceae	Porphyromonadaceae	Rikenellaceae	Porphyromonadaceae	Ruminococcaceae	Lachnospiraceae
		Phylum	Bacteroidetes	Bacteroidetes	Bacteroidetes	Firmicutes	Firmicutes	Firmicutes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Firmicutes	Firmicutes
Ď	CAG group		~	-	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	3	3	ю	ო	ю	ო	Ċ
	OTU_ID		OTU33	OTU47	OTU16	OTU55	OTU101	OTU184	OTU29	OTU71	OTU335	OTU120	0TU96	OTU87	OTU18	OTU14	OTU178	OTU195	OTU224	OTU695	OTU11	OTU13	OTU43	OTU92	OTU117	OTU177	OTU620

Supplementary Table S5 Taxonomy, dynamics and correlation information of 83 key OTUs.

Day 4 ^d																									4		
Day 2 ^c																										Ļ	*
ď		-0.41	-0.43	-0.35	-0.14	0.03	-0.07	-0.22	-0.22	-0.22	-0.25	-0.22	-0.21	-0.25	-0.17	-0.20	-0.16	-0.11	-0.14	-0.09	-0.16	-0.06	-0.01	0.37	0.54 #	0.49	0.6#
<i>P</i> - value ^a		0.00238 * ↓	0.00115* ↓	0.01004 * ↓	0.05659	0.00115* ↓	0.00187 * ↓	0.01212 * ↓	0.00066 * ↓	0.00491 * ↓	0.00149 * ↓	0.00036 * ↓	0.00149 * ↓	0.00149 * ↓	0.00491 * ↓	0.00036 * ↓	0.00149 * ↓	0.00491 * ↓	0.00491 * ↓	0.00149 * ↓	0.01212 * ↓	0.02683 * ↓	0.00149 * ↓	0.00036 * 1	0.00149 * 1	0.00036 * 1	0.00036 * 1
ments)	Genus					Parabacteroides		Barnesiella							Roseburia									Allobaculum	Parasutterella		Akkermansia
Taxonomical assignn (RDP Classifier)	Family	Lachnospiraceae	Lachnospiraceae	Lachnospiraceae	Lachnospiraceae	Porphyromonadaceae	Porphyromonadaceae	Porphyromonadaceae	Porphyromonadaceae	Porphyromonadaceae		Lachnospiraceae	Erysipelotrichaceae	Sutterellaceae		Verrucomicrobiaceae											
	Phylum	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes	Proteobacteria	Firmicutes	Verrucomicrobia
CAG group		З	ю	С	4	4	4	4	4	4	5	5	5	5	5	5	6	6	6	6	6	6	6	7	7	7	7
OTU_ID		OTU128	OTU189	OTU508	OTU125	66NTO	OTU15	OTU161	OTU201	OTU205	OTU272	OTU274	OTU601	OTU602	OTU324	OTU341	OTU141	OTU340	OTU215	OTU300	OTU711	OTU261	OTU422	OTU10	OTU123	OTU25	0TU5

ഹ

ഹ

Day 4 ^d		¥						¥															→				
Day 2 ^c																¥	↓										
٩R		0.6 #	1#	0.48	0.49	0.34	0.37	0.45	0.40	0.43	0.46	0.56 #	0.48	0.60 #	0.53 #	0.55 #	0.47	0.03	0.13	0.34	0.03	-0.18	-0.23	-0.06	0.02	0.11	0.10
<i>P</i> - value ^a		0.00253 * 1	1	0.52839	0.98738	0.65071	0.00036 * ↓	0.01277 * 1	0.98738	0.04332 * 1	0.00036 * 1	0.00036 * 1	0.01720 * 1	0.00361 * 1	0.00115* 1	0.01004 * 1	0.00036 * 1	0.00036 * ↓	0.00036 * ↓	0.00115* ↓	0.00149 * ↓	0.00036 * ↓	0.00238 * ↓	0.02683 * 🕴	0.43275	0.01212 * 🕴	0.02683 * ↓
ments)	Genus	Parasutterella	Anaerostipes	Olsenella		Lactobacillus		Allobaculum				Bacteroides			Paraprevotella		Barnesiella	Odoribacter									
Taxonomical assignr (RDP Classifier	Family	Sutterellaceae	Lachnospiraceae	Coriobacteriaceae		Lactobacillaceae	Porphyromonadaceae	Erysipelotrichaceae				Bacteroidaceae			Prevotellaceae		Porphyromonadaceae	Porphyromonadaceae	Porphyromonadaceae		Porphyromonadaceae		Porphyromonadaceae	Porphyromonadaceae	Porphyromonadaceae	Lachnospiraceae	
	Phylum	Proteobacteria	Firmicutes	Actinobacteria	Firmicutes	Firmicutes	Bacteroidetes	Firmicutes	Firmicutes	Firmicutes	Proteobacteria	Bacteroidetes	Firmicutes	un_Bacteria	Bacteroidetes	Firmicutes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Bacteroidetes	Firmicutes	Firmicutes
CAG group		7	7	7	7	7	7	7	8	8	8	8	8	8	8	8	8	6	6	6	6	6	6	10	10	10	10
OTU_ID		OTU137	OTU641	OTU306	OTU302	OTU257	OTU48	OTU3	OTU110	OTU252	OTU130	OTU9	OTU146	OTU148	OTU22	OTU119	OTU81	OTU12	OTU76	OTU65	OTU6	OTU53	OTU7	OTU170	OTU429	OTU362	OTU439

OTU_ID	CAG group		Taxonomical assignme (RDP Classifier)	ents	<i>P</i> - value ^a	R ^b	Day 2 ^c	Day 4 ^d
		Phylum	Family	Genus				
OTU376	10	Actinobacteria	Coriobacteriaceae		0.08012	0.17		
OTU19	11	Bacteroidetes	Bacteroidaceae	Bacteroides	0.00149 * 1	0.18		
OTU370	11	Firmicutes			0.05659	0.15		
OTU440	11	Proteobacteria	Moraxellaceae	Acinetobacter	0.02290 * 1	0.22		
OTU689	11	Bacteroidetes	Porphyromonadaceae		0.01212 * ↓	0.11		
OTU696	11	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.02683 * ↓	0.07		

a: Indicate the difference between abundance of DSS_7d and DSS_-1d, calculated by Mann Whitney test followed by Benjamini and Hochberg adjustment. * P < 0.05, † significantly increased in DSS_7d, \downarrow significantly decreased in DSS_7d.

b: SparCC correlation coefficient between 83 OTUs and OTU366 (BPB5), # R > 0.5 or R < -0.5.

c: OTUs that were significantly changed in both DSS_7d and DSS+BPB5_2d, but not in DSS_2d. † significantly increased, ↓ significantly decreased. d: OTUs that were significantly changed in both DSS_7d and DSS+BPB5_4d, but not in DSS_4d. † significantly increased, ↓ significantly decreased.

~

Supplementary Figure S1 Morphology and phylogeny of BPB5. (A) Colonies of BPB5 on YCFAGSC agar after 24 hours growth. (B) Gram stain of BPB5. (C) Phylogenetic tree based on 16S rRNA gene sequence of BPB5 and neighbors. The tree was generated by the neighbor-joining method, with *Bifidobacterium longum* as outgroup. Bar, 2% sequence divergence.

Supplementary Figure S2 Limited structural variation of gut microbiota of the 79 samples included in the study. (A) PCA. (B) Unweighted Unifrac PCoA. (C) Weighted Unifrac PCoA. Sample number of each group is the same as Fig. 2.

Supplementary Figure S3 The aggravation of DSS-induced colitis by BPB5 In the other two batches of animal trials. (A) and (B) are from batch BUM4, (C) and (D) are from batch BUM8. In BUM4, a moderate colitis was induced by the DSS and BPB5 treatments, and no mice died in the processing. In BUM8, a severe colitis was induced after 7 days' treatment, significantly higher mortality was induced in DSS+BPB5 group than DSS group, *P*=0.0029, Logrank test. All data are shown as mean \pm s.e.m. One-way ANOVA was used to analyze variation compared to DSS group at the same time point. * p<0.05, ** p<0.01, *** p<0.005, ns, not significant.

Supplementary Figure S4

Supplementary Figure S4 OTU-level rarefaction (observed OTUs) (A, B) and Shannon diversity index (C, D) at the sampling level of 9000 of gut microbiota in DSS and/or BPB5 treated mice. The column value was shown as mean \pm s.e.m. Kruskal-Wallis test for ANOVA test was used to analyze variation among each subgroup. * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.005. Sample size of each group was as described in Fig. 4C.

Supplementary Figure S5 Bray Curtis distance between the DSS+BPB5 and DSS groups on Day -1, 2, 4 and 7. Data are plotted as min to max with the median on the line in the box. Values of each group with different letters are significantly different based on the Kruskal-Wallis test (P < 0.05).

Supplementary Figure S6

Supplementary Figure S6 Bray Curtis distance between baseline and Day 2, 4 and 7 in DSS+BPB5 and DSS group. Data are plotted as mean \pm s.e.m. *** *P*<0.005.

Supplementary Figure S7 Large structural variation of gut microbiota of the 134 samples included in the study. (A) PCA. (B) Unweighted Unifrac PCoA. (C) Weighted Unifrac PCoA. Sample number of each group is the same as Fig. 4C.

Supplementary Figure S8 83 key OTUs were identified by applying Random Forest classification of their relative abundances in fecal samples, ranked in descending order of their feature accuracy of the models. N is the number of OTUs without which the accuracy of the model will decrease more than 0.3%. The 83 OTUs was the combination of N from 5 models followed by duplicate removal

ry Figure S9 Co-abundance pattern of 83 key OTUs which was responsible for the change of gut microbiota induced	BB5 intake. The color of the nodes indicates their distribution pattern within the samples. Disc size is correlated with	e of OTU. Edges represent SparCC correlation coefficient values above 0.5 (red) or below -0.5 (gray), and width of	portional to the absolute value of R. Sample number of each group is the same as Fig. 4C.
Supplementary Figure S9	by DSS and BPB5 intake.	the abundance of OTU. Ec	edges are proportional to tl