
Interpreting neural networks for biological
sequences by learning stochastic masks

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s42256-021-00428-6

Supplementary Information
Interpreting Neural Networks for Biological Sequences by Learning Stochastic Masks

Johannes Linder1,*, Alyssa La Fleur1, Zibo Chen2, Ajasja Ljubetič2, David Baker2, Sreeram
Kannan3, and Georg Seelig1,3

1
Paul G. Allen School of Computer Science and Engineering, University of Washington

2Institute for Protein Design, University of Washington
3Department of Electrical and Computer Engineering, University of Washington

*Correspondence to: jlinder2@cs.washington.edu

Additional Attribution Methods

This section lists additional attribution methods and variations of the Scrambler model that were included
in the supplementary benchmark comparisons for the PPI task (Extended Data Fig. 5).

Scrambler (Inclusion, Siamese, K Samples): By default, the Scrambler networks are trained by drawing
32 Gumbel samples from each scrambled PSSM in the training batch. In these versions, we instead draw K
samples for each pattern in the training batch.

Scrambler (Inclusion, Cont. Mean Bg): Optimizes the same objective as the Inclusion-Scrambler, but
uses a continuous interpolation perturbation with the mean training pattern B̃ instead of the temperature-

based perturbator: minMKL
[
P(X ×M(X) + B̃ × (1−M(X)))||P(X)

]
+ λ ·

(
tarea − 1/N ·

∑N
i=1M(X)i

)2
,

where M(X) is a real-valued, sigmoid masking model. Internally, network M is identical to the Scrambler.

Scrambler (Inclusion, Cont. No Bg): Optimizes the same objective as the Inclusion-Scrambler, but
uses a continuous interpolation perturbation with the all-zero pattern instead of the temperature-based

perturbator: minMKL
[
P(X ×M(X))||P(X)

]
+ λ ·

(
tarea − 1/N ·

∑N
i=1M(X)i

)2
, where M(X) is a real-

valued, sigmoid masking model.

Scrambler (Inclusion, Cont. Rand Bg): Optimizes the same objective as the Inclusion-Scrambler,
but uses a continuous interpolation perturbation with a random letter pattern R ∈ 0, 1N×M instead of the
temperature-based perturbator: minMKL

[
P(X ×M(X) + R × (1 −M(X)))||P(X)

]
+ λ ·

(
tarea − 1/N ·∑N

i=1M(X)i
)2

, where M(X) is a real-valued, sigmoid masking model.

Scrambler (Occlusion, Cont. Mean Bg): Optimizes the same objective as the Occlusion-Scrambler, but
uses a continuous interpolation perturbation with the mean training pattern B̃ instead of the temperature-

based perturbator: minM−KL
[
P(X× (1−M(X)) + B̃×M(X))||P(X)

]
+λ ·

(
tarea−1/N ·

∑N
i=1M(X)i

)2
,

where M(X) is a real-valued, sigmoid masking model.

Scrambler (Inclusion, Per Example): Optimizes the same objective as the Inclusion-Scrambler, but does
not train a network to predict importance scores. Instead, this method optimizes a set of importance scores

s for each pattern X that we wish to interpret individually: mins

(
1/K ·

∑K
k=1 KL

[
P(X

(k)
s)||P(X)

])
+ λ ·(

tbits−1/N ·KL
[
B̃1||X̂s

])2
, where X

(k)
s ∼ X̂s (letter-by-letter Gumbel-sampling) and X̂s = σ

(
log B̃+X×ṡ

)
.

ṡ ∈ RN×M is a channel-broadcasted copy of the importance scores s ∈ RN . We obtain s from a vector of
real-valued (trainable) numbers that we instance-normalize and apply the softplus activation on. We train
s until convergence using the Adam optimizer with learning rate = 0.01, β1 = 0.5 and β2 = 0.9.

Scrambler (Inclusion, Per Example, Cont. Mean Bg): Optimizes the same objective as the Per-
example Inclusion-Scrambler, but uses a continuous interpolation perturbation with the mean training pat-

1

tern B̃ instead of the temperature-based perturbator: minm KL
[
P(X × ṁ + B̃ × (1 − ṁ))||P(X)

]
+ λ ·(

tarea − 1/N ·
∑N

i=1 mi

)2
, where m ∈ [0, 1]N is a continuous sigmoid-restricted mask pattern.

Scrambler (Inclusion, Per Example, Cont. No Bg): Optimizes the same objective as the Per-example
Inclusion-Scrambler, but uses a continuous interpolation perturbation with the all-zero pattern instead of

the temperature-based perturbator: minm KL
[
P(X × ṁ)||P(X)

]
+ λ ·

(
tarea − 1/N ·

∑N
i=1 mi

)2
, where

m ∈ [0, 1]N is a continuous sigmoid-restricted mask pattern.

Scrambler (Inclusion, Per Example, Cont. Rand Bg): Optimizes the same objective as the Per-
example Inclusion-Scrambler, but uses a continuous interpolation perturbation with a random letter pattern
R ∈ 0, 1N×M instead of the temperature-based perturbator: minm KL

[
P(X × ṁ + R× (1− ṁ))||P(X)

]
+

λ ·
(
tarea − 1/N ·

∑N
i=1 mi

)2
, where m ∈ [0, 1]N is a continuous sigmoid-restricted mask pattern.

Scrambler (Occlusion, Per Example, Cont. Mean Bg): Optimizes the same objective as the
Occlusion-Scrambler (for a single pattern), but uses a continuous interpolation perturbation with the mean
training pattern B̃ instead of the temperature-based perturbator: minm−KL

[
P(X × (1 − ṁ) + B̃ ×

ṁ)||P(X)
]

+ λ ·
(
tarea − 1/N ·

∑N
i=1 mi

)2
, where m ∈ [0, 1]N is a continuous sigmoid-restricted mask

pattern.

Zero (Occlusion, Joint): Given pairs of input patterns X1 and X2, we optimize minM−KL
[
P(X1 ×

(1−M(G)(X1, X2)1), X2 × (1−M(G)(X1, X2)2))||P(X1, X2)
]

+ λ ·
(
tarea − 1/N ·

∑N
i=1M(S)(X1, X2)1i

)2
+

λ ·
(
tarea − 1/N ·

∑N
i=1M(S)(X1, X2)2i

)2
, where M is a pair-wise binary 0/1 masking model. See ’Zero

Scrambler’ for more details.

Zero (Inclusion, Siamese): Given pairs of input patterns X1 and X2, we optimize minMKL
[
P(X1 ×

M(G)(X1), X2×M(G)(X2))||P(X1, X2)
]
+λ·

(
tarea−1/N ·

∑N
i=1M(S)(X1)i

)2
+λ·

(
tarea−1/N ·

∑N
i=1M(S)(X2)i

)2
,

where M is a binary 0/1 masking model. See ’Zero Scrambler’ for more details.

Zero (Occlusion, Siamese): Given pairs of input patterns X1 and X2, we optimize minM−KL
[
P(X1 ×

(1−M(G)(X1)), X2× (1−M(G)(X2)))||P(X1, X2)
]

+λ ·
(
tarea− 1/N ·

∑N
i=1M(S)(X1)i

)2
+λ ·

(
tarea− 1/N ·∑N

i=1M(S)(X2)i
)2

, where M is a binary 0/1 masking model. See ’Zero Scrambler’ for more details.

Rand (Inclusion): Optimizes the same high-level objective as the Scrambler, but this model uses a pertur-
bation operator where de-selected features are replaced with a random nucleotide (or residue). Specifically,
Rand (Inclusion) optimizes minMKL

[
P(X ×M(G)(X) + R × (1 −M(G)(X)))||P(X)

]
+ λ ·

(
tarea − 1/N ·∑N

i=1M(S)(X)i
)2

, where M is a binary 0/1 masking model and R is a random letter pattern. See ’Zero
Scrambler’ for more details.

Rand (Occlusion): Optimizes minM−KL
[
P(X × (1 −M(G)(X)) + R ×M(G)(X))||P(X)

]
+ λ ·

(
tarea −

1/N ·
∑N

i=1M(S)(X)i
)2

, where M is a binary 0/1 masking model and R is a random letter pattern. See
’Zero Scrambler’ for more details.

Rand (Occlusion, Joint): Given pairs of input patterns X1 and X2, we optimize minM−KL
[
P(X1× (1−

M(G)(X1, X2)1) + R1 ×M(G)(X1, X2)1, X2 × (1−M(G)(X1, X2)2) + R2 ×M(G)(X1, X2)2)||P(X1, X2)
]

+

λ ·
(
tarea− 1/N ·

∑N
i=1M(S)(X1, X2)1i

)2
+ λ ·

(
tarea− 1/N ·

∑N
i=1M(S)(X1, X2)2i

)2
, whereM is a pair-wise

binary 0/1 masking model and R1,R2 are random letter patterns. See ’Zero Scrambler’ for more details.

Rand (Inclusion, Siamese): Given pairs of input patterns X1 and X2, we optimize minMKL
[
P(X1 ×

M(G)(X1) +R1 × (1−M(G)(X1)), X2 ×M(G)(X2) +R2 × (1−M(G)(X2)))||P(X1, X2)
]

+ λ ·
(
tarea − 1/N ·∑N

i=1M(S)(X1)i
)2

+ λ ·
(
tarea − 1/N ·

∑N
i=1M(S)(X2)i

)2
, where M is a binary 0/1 masking model and

R1,R2 are random letter patterns. See ’Zero Scrambler’ for more details.

Rand (Occlusion, Siamese): Given pairs of input patterns X1 and X2, we optimize minM−KL
[
P(X1 ×

(1−M(G)(X1)) +R1 ×M(G)(X1), X2 × (1−M(G)(X2)) +R2 ×M(G)(X2))||P(X1, X2)
]

+ λ ·
(
tarea − 1/N ·∑N

i=1M(S)(X1)i
)2

+ λ ·
(
tarea − 1/N ·

∑N
i=1M(S)(X2)i

)2
, where M is a binary 0/1 masking model and

R1,R2 are random letter patterns. See ’Zero Scrambler’ for more details.

2

Supplementary Tables

Supplementary Table 1: An overview of interpretation methods based on masking. The columns describe
(in order): Optimization Algorithm – Whether the method uses a parametric model to infer masks, or
whether the masks are optimized individually; Mask – Whether masked features are faded, blurred, zeroed,
or replaced with sampled values from either marginal distributions or a generator (”Counterfactual”); Task
– What task(s) the method was demonstrated on (C = Computer Vision, N = NLP, B = Biology); Predictor
– Whether the method interprets an existing predictor model or if a new predictor is trained as part of the
interpretation algorithm.

Optimization Algorithm Mask Task Predictor
Scrambler Network (this paper) Parametric Model Samples C, B Existing

Fong et al. (2017) (1) Per-example SGD Fade, Blur C Existing
Dabkowski et al. (2017) (2) Parametric Model Fade, Blur C Existing

Yoon et al. (2018) (INVASE) (3) Parametric Model Zero C, N New
Chen et al. (2018) (L2X)(4) Parametric Model Zero C, N New

Carter et al. (2019) (SIS) (5) Per-example Recursion Mean, Samples C, N, B Existing
Zintgraf et al. (2017) (6) Per-example Sampling Samples C Existing

Chang et al. (2018) (FIDO-CA) (7) Per-example SGD Counterfactual C Existing

References

1. Fong, R. C. & Vedaldi, A. Interpretable Explanations of Black Boxes by Meaningful Perturbation. in 2017 IEEE
International Conference on Computer Vision (ICCV) 3449–3457 (2017). doi:10.1109/ICCV.2017.371

2. Dabkowski, P. & Gal, Y. Real Time Image Saliency for Black Box Classifiers. in Advances in Neural Information
Processing Systems 30 (2017).

3. Yoon, J., Jordon, J. & van der Schaar, M. INVASE: Instance-wise variable selection using neural networks. In
International Conference on Learning Representations (2018).

4. Chen, J., Song, L., Wainwright, M. J. & Jordan, M. I. Learning to Explain: An Information-Theoretic Perspective
on Model Interpretation. Preprint at https://arxiv.org/abs/1802.07814 (2018).

5. Carter, B., Mueller, J., Jain, S., & Gifford, D. (2019, April). What made you do this? understanding black-box
decisions with sufficient input subsets. In The 22nd International Conference on Artificial Intelligence and Statistics,
567-576. PMLR.

6. Zintgraf, L. M., Cohen, T. S., Adel, T. & Welling, M.. Visualizing deep neural network decisions: Prediction
difference analysis. Preprint at https://arxiv.org/abs/1702.04595 (2017).

7. Chang, C. H., Creager, E., Goldenberg, A. & Duvenaud, D. Explaining image classifiers by counterfactual gener-
ation. Preprint at https://arxiv.org/abs/1807.08024 (2018).

3

