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Supplementary Note 1: Poincaré maps for learning hierarchi-
cal representations

Hyperbolic spaces are a Riemannian manifolds whose structure is well-suited to represent hierar-
chical and tree-like relationships. For our work, this combines two important advantages: First,
the metric structure of hyperbolic spaces allows us to capture continuous hierarchical relationships
and interpolate between points. Second — and in contrast to other metric spaces — hierarchies can
already be represented in two-dimensional hyperbolic space with small distortion [1, 2, 3, 4].

Poincaré disk model

There exist multiple, equivalent models of hyperbolic spaces, such as the Beltrami-Klein, the
Lorentz, and the Poincaré half-plane model. In this work, we base our approach on the Poincaré
disk model, as it is best suited for visual analysis. The Poincaré disk is defined as follows: let
P ={x c€R?||z| <1} be the open unit disk, where || - || denotes the Euclidean norm. The
Poincaré disk corresponds then to the Riemannian manifold (P,gs), i.e., the open unit disk
equipped with the Riemannian metric tensor
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where z € P and ¢g¥ denotes the Euclidean metric tensor. Furthermore, the distance between
points u,v € P is given as

u,v) = acos ||u_v||2
d(u,v) h(l“u||u||2><1||v||2>>' @

The boundary of the disk is denoted by 988 and is not part of the manifold, but represents infinitely
distant points. Geodesics in P are then arcs orthogonal to 0B (as well as all diameters). See 7?7
for an illustration.

It can be seen from Equation (1) that the Euclidean distance of two points in the Poincaré
disk is amplified with respect to their distance to the origin of the disk. This locality property
of the Poincaré distance is key for continuous embeddings of hierarchies. For instance, by placing
the root node of a tree at the origin of B¢ it would have a relatively small distance to all other
nodes as its Euclidean norm is zero. On the other hand, leaf nodes can be placed close to the
boundary of the Poincaré disk, as the distance grows fast between points with a norm close to
one. Furthermore, Equation (1) is symmetric and the hierarchical organization of the space is
solely determined by the distance of points to the origin. Due to this property, Equation (1) is
applicable in an unsupervised setting, where the hierarchical order of objects is not specified in
advance. Importantly, this allows to learn embeddings that simultaneously capture the hierarchy
of objects (through their norm) as well as their similarity (through their distance).

The Riemannian manifold structure of hyperbolic spaces enables the use Riemannian Stochastic
Gradient Descent (RSGD) [5] to compute the embeddings. In RSGD, parameter updates are
performed via

Y1 = Ry, (—ngrad(L, y;))

where 2, denotes a retraction from the tangent space at y onto the manifold, grad(L, y;) denotes
the Riemannian gradient of the scalar function £, and n > 0 denotes the learning rate. The embed-
dings can be learned directly in the Poincaré disk P or, alternatively, in the Lorentz model (which
has advantageous properties for stochastic optimization). We refer to [2] and [4] for the detailed
optimization procedure on both hyperbolic manifolds. When optimization is performed in the
Lorentz model, we can map the learned embeddings into the Poincaré disk via the diffeomorphism
p:H — P, where:

(T1,.-.,Zn)

xo+1

which preserves all geometric properties including isometry.

p(ﬂ?o,xl,---wn) =



Supplementary Note 2: Benchmarks on datasets with known
hierarchy

Visualization

We compare Poincaré maps to several methods frequently used for visualization: tSNE [6], UMAP
[7], diffusion maps [8], graph abstractions (PAGA [9]), ForceAtlas2 [10] and Monocle 2 [11]. For
all competing methods, we used a set of parameters in the range provided by the authors. For the
visualization comparison, for each method we chose the best set of parameters in terms of quality
metric described below.

While methods such as diffusion maps, PAGA and Monocle 2 can be used by a knowledgeable
user to infer the correct structure form data with several post-processing iterations, here we would
like to demonstrate how Poincaré maps extract meaningful insights from data without further
post-processing. The ability to recover hidden hierarchies automatically and in one shot makes
Poincaré maps an attractive tool for the analysis of branching processes and complex hierarchical
structures.

Scale-independent quality criteria

To quantitatively compare the performance of different embedding approaches, we use a scale-
independent quality criteria proposed by Lee et al. [12] The main idea is that a good dimensionality
reduction approach will have a good preservation of local and global distances on the manifold,
e.g. close neighbors should be placed close to each other while maintaining large distances between
distant points. Below we provide a short summary of how to compute this metric. All the details
can be found in the original paper of Lee et al.[12]

Let X = {z;}Y, be a high-dimensional dataset of N samples x; € R? (e.g., individual cells)
with p features (e.g., gene expression measurements) and ) = {y;}}¥., be a low-dimensional rep-
resentation of this dataset in m = 2 dimensions. Let J;; denote the distance from z; to z; in the
high-dimensional space and d;; denote the distance from y; to y; in the low-dimensional space.
Assume 0;; = 6;; and d;; = dj;;. The distances could be used to compute high (R = {p;; }1<i j<n)
and low (V = {v;;}1<s,j<n) dimensional ranks between the points:

pij:|k'55ik<5ij or (5ik:5ij and 1 <k < j<N)|, (2)
V7,j:|kdzk<d2] or (dlk:d” and1§k<]§N)|, (3)
where |A| denotes the cardinality of a set. According to this definition, reflexive ranks are set
to zero and non-reflexive ranks belong to {1,..., N — 1}.

A co-ranking matrix Q = {qxi }1<k,1<n—1 is defined as:

G5 = [{(i,4) : pij = k and iy = 1}| (4)
The co-ranking matrix contains all the necessary information about how ranks are preserved

in a given low-dimensional representation. As was demonstrated by Lee et al. [12], the co-ranking
matrix Q is straightforward to compute, and it could be used to compute Q yx — scale-independent

quality criteria for dimensionality reduction for a given value of K =1,...,N — 1:
1
Qnx(K) = KN Z dkl, (5)
(k,1)E€ULx

where ULg = {1,..., K} x{1,..., K} is the upper left corner of co-ranking matrix. Qyx(K) €
[0, 1] assesses the overall quality of the embedding. Essentially, it measures the preservation of K-
ary neighborhoods. A perfect embedding has Qnx(K) =1 for every K =1,...,N — 1.

The left part of of the @y x (K) curve reflects how local properties are preserved, and the right
part corresponds to the preservation of global properties. To improve its readability, Lee et al.[12]
propose to use two scalar quality criteria Qjocar and Qgiobar focusing separately on low and hight
dimensional qualities of the embedding:

Kmaax

Qlocal = % Z QNX(K)7 (6)

max K=1
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Supplementary Figure 1. Comparison of local and global quality metrics for vari-
ous datasets. All embeddings were computed with 3 random seeds and several different hyper-
parameters. We fixed k = 20 for all the datasets for a fair comparison.

N—-1
1
leobal = m K,; QNX (K), (7)

where K4, defines the split of the @y x curve and is automatically computed as:

K
Koo = arg max <QNX(K) N 1) (8)

The quantities of Qocar and Qgropar range from 0 (bad) to 1 (good).

In this work, to estimate distances d;; in the high-dimensional space, we use geodesic distances
estimated as the length of a shortest-path in a k-nearest neighbors graph. We fixed k = 20 for all
the datasets, as there is no objective way to decide on a correct k, and visually results looked good
for all the embeddings for this choice of k. For the distances J;; in the low-dimensional space we
use euclidean distances for all the embeddings except Poincaré maps, for which we use hyperbolic
distances. As all the embeddings involve an element of stochasticity in their output, we run every
embedding three times with a different seed. We run all the embeddings with a different set of
parameters in the range proposed by the authors of each method. For our comparisons, we used
the scanpy implementation of PCA, UMAP, tSNE, and diffusion maps, as these are very effective
implementations adapted for single-cell datasets. The scanpy package provides recommendations
for the default set of parameters (demonstrated to work well on a wide range of single-cell datasets),
so we tried all the recommended parameters. In particular, for UMAP we used v = 1.0, 2.0,
min_dist = 0.1, 1.0, 0.5, spread = 0.1, 0.5, 1.0. For tSNE, the scanpy implementation allows to
vary perplexity, but since this parameter is linked to the k in k-nearest neighbors, we fix it for
all the methods for a fair comparison. For ForceAtlas2, we used a PAGA initialization (with a
resolution of 0.9, as recommended by the authors) as it was demonstrated to substantially improve
the performance of the ForceAtlas2 method. Diffusion maps have only two parameters n__comp
(number of dimensions) and k nearest neighbors, which are fixed between all the methods for a
fair comparison. For SIMLR, we provided additional advantage by using information about the
number of cell types: ¢ = number of cell types computed from annotated labels, cores.ratio =
0. For PHATE, we used parameters recommended by the authors in their tutorial notebook:
knn_dist="euclidean", gamma=0, t=12, decay=15. For SAUCIE, we used steps=1000.

Supplementary Figure 1 demonstrates the comparison of Qocar and Qgiopar for all the
datasets described below.



Robustness of Poincaré maps to random seed and choice of hyper-parameters choice

We used the quality criteria described above and visual inspection to address the robustness of
Poincaré maps to hyper-parameters choice and random seed. Supplementary Figure 2 (a)
demonstrates that good values of o vary for different datasets. However, the parameter v has a
less strong effect and rather controls how much the embedding will be scattered on the disk. We
advise to set v to 1.0 or 2.0 depending on the dataset size: larger datasets typically have better
visualization with v = 2.0 (Supplementary Figure 2 (b-c)). Supplementary Figure 2 (a, d)
demonstrates that Poincaré maps are very robust to random seed and that it doesn’t significantly
affect neither quality nor visual interpretation.

Synthetic datasets

To demonstrate the performance of Poincaré maps we used several synthetic datasets available
as Jupyter notebooks with Scanpy [13]: a simple toggle switch, myeloid progenitors and myeloid
progenitors with Gaussian blobs. These datasets were previously used to demonstrate the perfor-
mance of diffusion maps and graph abstractions, and constitute great examples of manifolds with
a hierarchical structure of increasing levels of complexity. All models consist of Boolean equations,
which were translated into ordinary differential equations and simulated with Scanpy as stochastic
differential equations with Gaussian noise [14].

A simple toggle switch model [15, 16] is a process with two branches, which are defined by the
expression of two markers. Supplementary Figure 3 demonstrates that all competing methods
produce rather correct results for this simple problem. However, Poincaré maps give a more clear
separation of the intermediate states of terminal fates (interl vs inter2). In this example, only
tSNE, diffusion maps, and Poincaré maps produce embeddings with meaningful pairwise distances.

A synthetic dataset for myeloid differentiation [17] represents cell differentiation progresses of a
common myeloid progenitor state towards one of four different branches: erythrocyte, neutrophil,
monocyte, and megakaryocyte. Supplementary Figure 4 shows the provided embeddings for
all methods. Poincaré maps produce an embedding which is visually similar to the other methods
but has neither discontinuities nor overlaps in the trajectories since it preserves all the pairwise
distances. Given the known root, the rotation of the Poincaré map (by means of translation)
allows to easily read out the hierarchy. Diffusion maps produce embeddings consistent with one
main branch, but more Euclidean dimensions would be necessary to separate the rest. Monocle
2 produces a tree layout consistent with the hierarchical structure of the data but is not able to
reconstruct the temporal connection (trajectory) of the cell differentiation process.

The third dataset shows the stability of Poincaré maps with respect to the existence of clus-
ters not related to the main cell development process. To this end we use the synthetic dataset of
myeloid differentiation with two Gaussian blobs, added as proposed by Wolf et al. [9] (Supplementary
Figure 5). None of the benchmark methods except ForceAtlas2 is able to capture the hierarchy.

Mouse myelopoesis dataset (single-cell RNA seq)

To demonstrate the performance of Poincaré maps on single-cell RNA seq data, we used the mouse
myelopoesis dataset (wild type only) from Olsson et al. [18]. The data was downloaded and
preprocessed according to the pipeline from Qiu et al. [11]. The processed dataset contained
532 features for 382 cells. Nine cell types were annotated corresponding to the original study:
HSCP-1 (hematopoietic stem cell progenitor), HSCP-2, megakaryocytic, erythrocytic, Multi-Lin*
(multi-lineage primed), MDP (monocyte-dendritic cell precursor), monocytic, granulocytic and
myelocyte (myelocytes and metamyelocytes). In order to obtain the best results for Monocle 2, we
used the analysis pipeline provided by the authors (https://github.com/cole-trapnell-lab/
monocle2-rge-paper). As the reference hierarchy, we used the canonical hematopoetic cell lineage
tree [19] (Supplementary Figure 6 (a)).

Poincaré maps, after rotation (Supplementary Figure 6 (b)), reveal the known hierarchy
and suggest that part of HSPC-2 cluster actually corresponds to the megakaryocyte/erythrocyte
progenitor (MEP), and that the cluster named Multi-Lin corresponds to the granylocyte/monocyte
progenitor (GMP). Also according to Poincaré maps, the cluster annotated as myelocyte does not
belong to the hierarchy, or constitutes a mature state of granulocytes. However, the validation of
these hypotheses requires a detailed differential expression analysis.


https://github.com/cole-trapnell-lab/monocle2-rge-paper
https://github.com/cole-trapnell-lab/monocle2-rge-paper
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Supplementary Figure 2. Robustness of Poincaré maps to random seed and hyper-
parameters choice for a fixed k = 20 (a) Scale-independent quality criteria for various hyper-
parameters and three random seeds. (b — ¢) Change of visual qualities of the embedding for a
fixed o and varying ~y for ToggleSwitch (b) and Olsson (c) datasets. Red frame represents best
quality score. (d) Comparison of robustness to random seed: o and ~ are fixed.



Supplementary Figure 6 (c) shows how widely used methods such as tSNE distort the
pairwise distances, therefore making more difficult to draw conclusions about hierarchies. Simi-
larly, two dimensions of diffusion maps are not enough to represent the branching. UMAP and
ForceAtlas2 results overall agree with the Poincaré maps, but don’t allow to reason about the subtle
hierarchical relations between HSCP-1/2 clusters and MDP. Monocle 2 captures the global branch-
ing but fails to depict more fine-grained relations: between erythrocytytes and megakaryocytes or
granulocytes and myelocytes.

Mouse myeloid progenitors dataset (MIARS-Seq)

As an example of a dataset with multiple intermediate populations, we use a dataset provided by
Paul et al. [20]. Myeloid progenitor cells were separated by sorting the c¢-Kit+ Scal lineage from
mouse bone marrow and sequenced with MARS-seq. We followed the data preprocessing procedure
recipe_zhengl7 (Scanpy-recipe [21]), which selects the 1000 most highly-variable genes for 2730
cells. In the original study, the authors identify 19 clusters. We use these labels and canonical
hematopoetic cell lineage tree (Supplementary Figure 7 (a)) to compare the performance of
all methods. We run all methods except Monocle 2 on the 20 top principal components of the
preprocessed data. For Monocle 2, we used the Jupyter notebook provided by the authors (the
lymphoid cluster was separated as described in the original study).

Supplementary Figure 7 (b) shows the embeddings provided by Poincaré maps. For this
dataset, the root is supposed to be at CMP cluster, which is not observed. We chose the root
as the medoid (with respect to Poincaré distances) of the MEP and GMP clusters combined.
Supplementary Figure 7 (c) shows the hierarchy that could be read out from the Poincaré map.
We would like to point out that Poincaré maps clearly separate lymphoid cells and dendritic cells
as outliers, which agrees with the canonical tree as they are part of lymphoid lineage. None of the
other methods (Supplementary Figure 7 (d)) were able to capture this fact. Poincaré maps also
suggest that some of the clusters (13-15) could be relabeled to better reflect the canonical hierarchy.
After the removal of the lymphoid cluster, Monocle 2 captures the main lineage branching between
the MEP and GMP lineages, but it does not separate dendritic cells, and destroys the eosonphils
cluster. Wolf et al.[9] demonstrated that Monocle 2 results without the removal of the lymphoid
cluster only worsen.

Finally, Poincaré maps places the 16Neu cluster downstream of 15Mo in the hierarchy. However,
the canonical hierarchy shows neutrophils and monocytes at the same level. As noted by Wolf et
al.[9], we suppose that this inconsistency is due to a faulty labeling of the clusters.

Planaria dataset (Drop-seq)

To demonstrate scalability of Poincaré maps to large datasets, we analyzed the entire Planaria
dataset of Plass et al. [22]. The dataset comprises 11 individual experiments capturing a total
of 21,612 cells with droplet-based single-cell transcriptomics (Drop-seq). To obtain the Poincaré
maps we used the pre-processed data provided by the authors: https://nbviewer. jupyter.org/
github/rajewsky-lab/planarian_lineages/blob/master/paga/planaria.ipynb. The prepro-
cessed dataset comes in the form of 50 principal components, which were used by the authors
to apply tSNE, PAGA and ForceAtlas2. (Supplementary Figure 8) illustrates that Poincaré
maps agree with tSNE and ForceAtlas2 embeddings, significantly outperform PCA and UMAP,
and agrees with the PAGA hierarchy annotation (Figure 4 in Plass et al.). Unfortunately we were
not able to compute SIMLR for this dataset, because of the computation time.

C. elegans dataset (10X Genomics)

The C. elegans dataset from Packer et al. [23] is the largest dataset used in our experiments.
Original dataset contained 84,625 single cells measured with 10x Genomics platform. We used
the preprocessed version (batch corrected, 100 PCA components) of the data provided by the au-
thors at https://github.com/qinzhu/VisCello. In the original study the authors used UMAP
to visualize the data. We loaded the UMAP coordinates provided by the authors to perform
fair comparison with Poincaré maps. 37 manually annotated labels of cell types were provided
together with the dataset. We randomly down-sampled the dataset to 40,000 cells. The whole
dataset represents > 60x oversampling of the 1,341 branches in the C. elegans embryonic lineage,
therefore down-sampling should not destroy statistical properties of the dataset. We checked that


https://nbviewer.jupyter.org/github/rajewsky-lab/planarian_lineages/blob/master/paga/planaria.ipynb
https://nbviewer.jupyter.org/github/rajewsky-lab/planarian_lineages/blob/master/paga/planaria.ipynb
https://github.com/qinzhu/VisCello

sub-sampled data contained all 37 original cell types. Supplementary Figures 1 , 9, 10 demon-
strates, that Poincaré maps significantly outperform all other embedding methods. Unfortunately
we were not able to compute SIMLR for this dataset, because of the computation time.

Clustering

Poincaré maps provide embeddings useful beyond visualization. Since Poincaré maps preserve
pairwise similarities, their embeddings are suitable for downstream tasks, such as clustering. We
compared several clustering approached using Poincaré maps and benchmark embeddings. We also
provide Louvain clustering and clustering in the original gene expression space. Since the datasets
comprise several continuous trajectories and there is no true separation for progenitor populations
of different branches, we used the Adjusted Rand Index (ARI) and Fowlkes-Mallows scores (FMS)
to measure cluster quality.

Adjusted Rand Index. The Adjusted Rand Index (ARI) is a function that measures the sim-
ilarity between two cluster assignments. ARI is bonded between [—1,1], where negative values
correspond to independent labellings, similar clusterings have a positive ARI, and 1.0 is the per-
fect match score. Lets denote C' a ground truth class assignment and K the clustering. Adjusted
Rand Index is defined through raw Rand Index (RI):

b
RI:L (9)

Cgsa'mples ’
where a is the number of pairs of elements that are in the same set in C and in the same set in
K, b is the number of pairs of elements that are in different sets in C' and in different sets in K,
and C’g semples ig the total number of possible pairs in the dataset (without ordering). ARI is after
adjusting for random labellings:

RI — E[RI]
max(RI) — E[RI]’
where a is the number of pairs of elements belonging to the same cluster in predicted and true

labels, b is the number of pairs of elements belonging to different clusters in predicted and true
labels, and C;**™"'** is the number of all possible combinations of pairs of elements in the dataset.

ARI = (10)

Fowlkes-Mallows scores. The Fowlkes-Mallows score FMI is defined as the geometric mean of
the pairwise precision and recall:
TP

FMI= V(TP + FP)(TP + FN)’ (1)

where TP is the number of pairs of points that belong to the same cluster in both the true labels
and the predicted labels (true positives), FP is the number of pairs of points that belong to the
same clusters in the true labels but not in the predicted labels (false positives), and FN is the
number of pairs of points that belong in the same clusters in the predicted labels but not in the
true labels (false negatives). The FMI ranges from 0 to 1. A high value indicates a good similarity
between two clusterings.

More details on these metrics can be found at: https://scikit-learn.org/stable/modules/
clustering.html#clustering-evaluation

Supplementary Table 1 shows the clustering results on synthetic datasets. Poincaré maps
achieve very similar score to Louvain clustering, and significantly outperform clustering approaches
using other embedding methods, except tSNE embedding, which combined with spectral clustering
achieves the best scores. However, as we demonstrated before, tSNE does not preserving the
hierarchy, and therefore would be less useful for other downstream tasks.

Pseudotime

We demonstrated Poincaré pseudotime performance by comparison with real time and diffusion
pseudotime on synthetic datasets. Supplementary Table 2 demonstrates that Poincaré pseu-
dotime, as well as diffusion pseudotime, achieve high correlation scores with actual time on all
synthetic datasets. This is unsurprising since these two measures are related in their nature. The
performance of both pseudotime approaches is probably bounded by the construction of kNNG.


https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation

Supplementary Note 3: Reconstructing developmental trajec-

tories of the asynchronous process: early blood development
in mice (qPCR)

We analyze the single cell gPCR dataset of early blood development in mice [24] using Poincaré
maps. We followed the data preprocessing procedure described in Haghverdi et al. [8].

First, we visualized the dataset with a Poincaré map using the labels corresponding to different
stages of differentiation [24]: primitive streak (PS), neural plate (NP), head fold (HF), four somite
GFP negative (45SG-) and four somite GFP positive (43G+) (Supplementary Figure 11 (a)).
We see one cluster standing out. Therefore, we perform spectral clustering with Poincaré distances
to break down this cluster for further analysis (Supplementary Figure 11(b),(c)). Then, cluster
4 mainly consists of Flkl-Runxl- cells (see Supplementary Figure 11 (d)). Moignard et al.
[24] refer to this cluster as “mesodermal cells at primitive strike” and suggest that these cells give
rise to blood and endothelial cells.

The cell that Haghverdi et al. choose as the root of the differentiation for the diffusion pseudo-
time analysis belongs to the “mesodermal” cluster in our analysis. We visualize (Supplementary
Figure 12) the diffusion pseudotime and Poincaré pseudotime with the roots (a) suggested by
Haghverdi et al., and (b) the most dissimilar point in the PS cluster in terms of Poincaré distance.
Undesirably, the distances from (a) grow orthogonal to the actual developmental stages. It agrees
with the conclusion in Haghverdi et al. that such a choice of embedding does not allow to see
the asynchronous development. Therefore, cluster 4 may not correspond to cells leading to en-
dothelial and blood cells, but rather to early mesodermal cells, which in their turn lead to some
other population (Supplementary Figure 4 in Moignard et al.). We will further refer to cluster 4
as “mesodermal”.

As pointed out by Moignard et al., blood development is a highly asynchronous process, which
is hard to capture with PCA or diffusion maps. In Supplementary Figure 13 we further
demonstrate how Poincaré maps could be used to reveal the developmental structure in this process.
First, we apply the rotation to the Poincaré map to place the root cell defined above to the center
of the disk. Then, we apply our lineage detection procedure and demonstrate that inside of each
lineage, the order of the developmental stages is on average preserved. However, if we look at all
lineages combined, then the populations from PS, NP, HF stages appear to be a homogeneous
mixture. Therefore, the angular information in Poincaré maps adds the additional amount of
information crucial to understanding asynchronous processes.

Finally, we analyzed the expression profiles of main endothelial and hematopoietic markers for
different lineages (Supplementary Figure 14). Poincaré maps suggest that cells make an early
decision about which branch to become. In particular, we suggest that cells commit to their future
branch as early as in the PS stage.



Dataset ToggleSwitch Myeloid progenitors || MP with blobs
name ARS FMS ARS FMS ARS FMS
louvain 0.46 0.59 0.58 0.63 0.89 0.91
spectral Poincaré 0.39 0.54 0.63 0.67 0.89 0.91
agglomerative Poincaré 0.49 0.61 0.59 0.64 0.89 0.91
kmedoids Poincaré 0.38 0.53 0.52 0.59 0.54 0.61
spectral raw 0.18 0.39 0.52 0.58 0.28 0.46
agglomerative raw 0.12 0.42 0.54 0.60 0.46 0.64
kmedoids raw 0.19 0.41 0.55 0.61 0.17 0.36
spectral PCA 0.18 0.39 0.53 0.59 0.29 0.41
agglomerative PCA 0.12 0.42 0.48 0.55 0.43 0.60
kmedoids PCA 0.20 0.42 0.49 0.56 0.65 0.70
spectral tSNE 0.47 0.60 0.59 0.64 0.85 0.88
agglomerative tSNE 0.36 0.51 0.49 0.56 0.89 0.90
kmedoids tSNE 0.43 0.57 0.43 0.51 0.71 0.76
spectral UMAP 0.37 0.52 0.42 0.50 0.89 0.91
agglomerative UMAP 0.37 0.52 0.52 0.58 0.89 0.91
kmedoids UMAP 0.31 0.48 0.58 0.63 0.66 0.71
spectral DiffusionMaps 0.55 0.66 0.52 0.58 0.76 0.81
agglomerative DiffusionMaps 0.04 0.39 0.11 0.31 0.12 0.44
kmedoids DiffusionMaps 0.06 0.36 0.42 0.50 0.33 0.50
spectral ForceAtlas2 0.00 0.53 -0.00 0.30 0.00 0.39
agglomerative ForceAtlas2 0.48 0.61 0.56 0.61 0.89 0.91
kmedoids ForceAtlas2 0.42 0.56 0.55 0.61 0.53 0.60

Supplementary Table 1. Comparison of various clustering approaches on the synthetic datasets.
Higher values are better.

Dataset dpt pmpt dpt-
pmpt
ToggleSwitch: branchl 0.99 0.99 0.99
ToggleSwitch: branch2 0.98 0.98 0.99
ToggleSwitch: avg 0.99 0.98 0.99
MyeloidProgenitors: erythrocyt 0.89 0.94 0.91
MyeloidProgenitors: megakaryoc 0.94 0.95 0.93
MyeloidProgenitors: monocyte 0.93 0.89 0.98
MyeloidProgenitors: neutrophil 0.91 0.91 0.99
MyeloidProgenitors: avg 0.92 0.92 0.95
MyeloidProgenitors with blobs: Ery 0.89 0.94 0.90
MyeloidProgenitors with blobs: Mk 0.94 0.96 0.93
MyeloidProgenitors with blobs: Mo 0.93 0.89 0.97
MyeloidProgenitors with blobs: Neu 0.91 0.91 0.99
MyeloidProgenitors with blobs: avg 0.92 0.92 0.95

Supplementary Table 2. Comparison of diffusion pseudotime (dpt) and Poincaré pseudotime
(pmpt) against real time on synthetic datasets using Pearson correlation coefficient between. The
last column corresponds to the correlation coefficient between diffusion pseudotime and Poincaré
pseudotime. Higher values are better.
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Supplementary Figure 3. Comparison of various embeddings for the simple toggle
switch model. There are two distinct branches. We additionally labeled intermediate states
from the simulations. (a) Raw Poincaré map. (b) Rotation of the Poincaré map with respect to

the known root. (c¢) Benchmark methods.
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Supplementary Figure 4. Comparison of various embeddings for a synthetic model of
myeloid progenitors differentiation. There are four distinct branches. We additionally labeled
intermediate states from the simulations. (a) Raw Poincaré map. (b) Rotation of the Poincaré
map with respect to the known root. (¢) Benchmark methods.
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Supplementary Figure 5. Comparison of various embeddings for a synthetic model of
myeloid progenitors differentiation (4 distinct branches) with two additional Gaussian
clusters. We additionally labeled intermediate states from the simulations. (a) Raw Poincaré
map. (b) Rotation of the Poincaré map with respect to the known root. (c) Benchmark methods.
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rotated with respect to the root. (¢) Benchmark methods.
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Supplementary Figure 7. Comparison of various embeddings for the mouse myeloid
progenitors MARS-seq dataset (Paul et al.). (a) Canonical hematopoetic cell lineage tree.
Colored nodes correspond to the population colors from the dataset. White nodes correspond
to intermediate annotated states. (b) Rotated Poincaré map with respect to the root (medoids
of MEP and GMP cluster). (c) Hierarchical relationships suggested by the Poincaré map. (d)
Benchmark methods. To reproduce the Monocle 2 tree, the lymphoid cluster was removed.
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Supplementary Figure 8. Comparison of various embeddings for the planaria Drop-
seq dataset (Plass et al.). (a) Poincaré map rotated with respect to the root (medoids of
neoblast 1 cluster). (b) Benchmark methods.
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Supplementary Figure 9. Comparison of various embeddings for the C. elegans 10X
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Supplementary Figure 11. (a) Poincaré map of the Moignard dataset. (b) Spectral clustering
with Poincaré distances. (c) Analysis of stage-composition of the defined clusters. Clusters 1
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