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Supplementary Figure 1 

-lo
g 10

Sï
va

lu
e 

fR
U��
ïP

HU
�H
Qr
LF
KP

HQ
W

0
5

10
15

20
reads

prLPHUV

C
C

TC
TG

C
C

G
G

C
AG

AG
G

TC
C

C
AG

C
A

TG
C

TG
G

G
A

G
C

AG
AG

G
C

G
C

C
TC

TG
C

AATC
C

C
AG

C
TG

G
G

ATT
G

C
C

TTTAA
TTAAAG

G
C

AG
G

C
AG

AG
C

TC
TG

C
C

T
ATC

C
C

AG
C

G
C

TG
G

G
AT

G
AG

G
C

AG
A

TC
TG

C
C

TC
C

TG
C

C
TC

C
G

G
AG

G
C

AG
C

C
AC

TG
AG

C
TC

AG
TG

G
C

AG
AG

G
C

A
TG

C
C

TC
TG

AG
TG

C
TG

G
C

C
AG

C
AC

T
AC

TG
C

TC
T

AG
AG

C
AG

T
C

C
TG

C
C

TC
G

AG
G

C
AG

G
AG

AG
G

C
AG

C
TG

C
C

TC
T

G
G

ATTAAA
TTTAATC

C
AAG

AG
C

AC
G

TG
C

TC
TT

G
G

G
AG

G
C

A
TG

C
C

TC
C

C
C

C
C

AG
C

AC
G

TG
C

TG
G

G
ATTAAAG

G
C

C
TTTAAT

AAG
AG

C
AG

C
TG

C
TC

TT
TC

G
G

AAG
A

TC
TTC

C
G

A
G

AAG
AG

C
A

TG
C

TC
TTC

AG
C

C
AC

C
A

TG
G

TG
G

C
T

AG
AG

C
AC

C
G

G
TG

C
TC

T

0
5

10
15

20

reads

prLPHUV

AAAAAAAA
AAAAAC

C
C

AAC
G

TG
TA

AAC
TC

TG
A

AC
AC

G
TTC

AC
AG

TC
C

G
AC

C
G

AG
AT

AC
G

ATC
G

T
AC

G
ATC

TG
AC

G
TG

TAG
AC

G
TTC

AG
AC

TC
TG

AA
AC

TG
TAG

A
AG

AAC
TC

T
AG

AG
TTC

T
AG

ATC
G

TC
AG

ATC
TAC

AG
ATC

TC
G

AG
TC

C
G

AC
AG

TTC
TAC

ATC
AG

ATC
ATC

G
TC

G
G

ATC
TAC

AC
ATC

TC
G

G
T

ATC
TG

ATG
C

AC
C

G
AG

A
C

AC
G

TTC
A

C
AG

AG
TTC

C
AG

ATC
G

T
C

AG
TC

C
G

A
C

ATC
AG

AT
C

C
AC

C
G

AG
C

C
G

AC
G

AT
C

C
G

AG
ATC

C
G

AC
G

ATC
C

G
AG

ATC
T

C
G

ATC
G

TC
C

G
ATC

TG
A

C
G

G
AC

TG
T

C
G

TC
G

G
AC

C
G

TG
TAG

A
C

G
TTC

AG
A

C
TAC

AC
G

T
C

TAC
AG

TC
C

TC
G

G
TG

G
C

TC
TG

AAC
C

TG
AAC

G
T

C
TG

TAG
AA

G
AAC

G
TG

T
G

AAC
TC

TG

-lo
g 10

Sï
va

lu
e 

fR
U��
ïP

HU
�H
Qr
LF
KP

HQ
W

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phred score

)U
HT
XH
QF
\

������XQPDSSHG
������XQPDSSHG��SrLPHU�
������PDSSHG

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phred score

)U
HT
XH
QF
\

������XQPDSSHG
������XQPDSSHG��SrLPHU�
������PDSSHG

a

b

c d

 
Analysis of primary sequencing data. (a) For the top fifty most highly 

enriched motifs in 10,000 randomly drawn mapped reads the hypergeometric 

enrichment p-value is shown (red). For comparison the enrichment p-value of 

the same motifs in the primer sequences is shown. (b) Same as (a), but for 

10,000 randomly drawn non-mapped reads. A comparison of (a) and (b) 

reveals a strong overlap of motifs enriched in non-mapped reads and primer 

Nature Methods: doi:10.1038/nmeth.2930



sequences. In (a) and (b) data for cells are shown. Results for controls are 

highly similar. (c) Cumulative distribution of average per reads Phred quality 

score for mapped reads, non-mapped reads and non-mapped reads 

containing primer derived 8-mers in cell samples. (d) Same as (c), but for 

control samples.  

Nature Methods: doi:10.1038/nmeth.2930



 
 
Supplementary Figure 2 

random barcode length = 4
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Unique molecular identifiers (UMIs) allow quantification of absolute 
transcript number. (a) Number of sequenced spike-in RNAs in individual 
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samples as a function of the estimated number of molecules based on spike-

in concentration. The intercept represents the conversion factor β and 

corresponds to the fraction of RNA recovered by sequencing (3.3% for 

controls and 3.6% for cells). The red dots and error bars indicate the mean 

and standard deviation, respectively, of each spike-in across samples. (b) 

Histogram of log2-ratio between number of reads and number of UMIs per 

gene. Each UMI was sequenced on average seven times (see Supplementary 

Table 1). Transcripts were thus over-sequenced sevenfold. (c) Predicted 

number of transcripts as a function of the number of observed UMIs 

(Methods). Genes, sequenced with more than 500 transcripts can still be 

reliably quantified using UMIs of length four. Since in our hands CEL-seq has 

a sensitivity of < 10%, genes expressed at several thousand copies can still 

be quantifies with UMIs of length 4. Error bars for number of UMIs at a given 

expression level were derived based on random counting statistics. A direct 

translation of UMIs into transcript counts (red line) only works at low 

expression. (d) Average number of transcripts across cells with a given 

number of observed UMIs. Less than 10% of the cells contain few transcripts 

with >200 sequenced UMIs. A 4 bp random barcode as UMI is thus sufficient. 

Simulated distributions of the number of UMIs for the derived transcript 

abundance are displayed for a UMI length of 5 and 6 bases. The distributions 

become distinguishable at ~150 UMIs per gene. Although a saturation of the 

4bp UMI distribution is apparent, transcript numbers can be predicted with 

confidence even at 200 UMIs per gene (see error bars in (c)). (e) Comparison 

of mean expression estimates across all cells based on transcript counts 

(TPM), versus read counts (RPM). Differences greater than twofold can be 

observed across the entire dynamic range, suggesting that many genes are 

affected by PCR amplification bias. (f) Cells were split into two groups and 

average expression in TPM was compared between these two groups. In 

contrast to (e) strong differences only occur at low expression due to sampling 

noise. (g) Histogram of log2-fold change in the coefficient of variation (CV) 

computed based on reads per million (RPM) versus transcripts per million 

(TPM). 
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Gene expression in single mESCs is highly correlated. (a) Number of 

sequenced transcripts for pluripotency markers Pou5f1, Sox2, and Klf4 as 

well as differentiation markers Brachyury (mesoderm), Otx2 (ectoderm), and 

Gata4 (endoderm) in cells and control samples. In contrast to robustly 

expressed plutipotency markers, differentiation markers are only very lowly 

expressed in all samples. Sequencing for cells and controls was performed in 

Nature Methods: doi:10.1038/nmeth.2930



two batches each, due to a limited number of sample barcodes. The second 

batch of cells yielded on average more transcripts than the first. (b) 

Correlation between the number of sequenced transcripts in single cells or 

controls and the average across all cell or control samples, respectively. 

Correlation is high for all cells but on average lower and more variable than 

for control samples. (c) Spike-in RNA (1 µl of ERCC92 group 1 spike-in mix1 

diluted to 1:2,500,000 was added to each sample) was used to estimate the 

number of transcripts per cell. A regression of sequenced spike-in transcripts 

on the predicted number of spike-in molecules yields the conversion factor 

β which reflects the sequenced fraction of RNA with an average of 0.033 in 

controls and 0.036 in cells. The conversion factor is shown in the upper panel. 

Error bars correspond to the standard error of the regression parameters. R2 

between sequenced and predicted number of spike-ins is shown in the lower 

panel.  Mean and standard deviation are indicated as solid and broken black 

lines, respectively. (d) Scatter plot of the total number of sequenced 

transcripts in control samples versus the conversion factor β. The correlation 

(R = 0.91) suggests that variability of β reflects variable efficiencies for 

different tubes.  
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Data fitting confidence depends on the mean and is similar in cells and 
controls. We conducted simulations to investigate the dependence of the p-

value obtained by a negative binomial fit to a set of random numbers sampled 

from a negative binomial distribution. To reflect the properties of our data we 

chose a size of the data set equal to the number of cells in 2i conditions. To 

perform the simulation we generated random numbers from distributions with 

varying mean and a size parameter that scales with the mean. To these 

random numbers we then fitted a negative binomial. At each mean value we 

sampled 50 times. (a) Distribution of p-values for rejecting a negative binomial 
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as a function of the mean.  For mean values of 5 or lower the fits are almost 

always rejected. (b) The mean obtained by the fit as a function of the mean of 

the input distribution. (c) The Fano factor obtained from the fit as a function of 

the mean of the input distribution. Even at low mean values the fitting 

procedure yields overall good estimates of the true parameters. In (a-c) the 

size parameter equals two times the mean, yielding a fixed dispersion of 1.5, 

independent of the mean. (d) Histogram of the fraction of genes for which the 

negative binomial fit is not rejected (P > 0.01) in cells (red) and control 

samples (blue) as a function of minimum mean expression. The fraction of 

genes with confident fits saturates at a minimum average of five transcripts 

per cell. About 80% of the genes follow a negative binomial. Importantly, this 

number is similar in cells and control samples, suggesting that the reason for 

rejecting a negative binomial is not in general increased cell-to-cell variability, 

due to, for instance, bimodality. We screened the remaining cases manually 

and found that in all cases a single or a few tail events caused the fit to fail. 

We checked in more detail for bimodal distributions and identifed genes, 

which display bimodal distributions in the cells but not in the controls using 

Hartigan’s test for bimodality (P < 0.01). The fraction of bimodal genes 

(yellow) is always low and converges against zero for highly expressed 

genes. (e) Three examples of highly expressed genes for which the negative 

binomial fit is rejected in cells but not in the control samples. These examples 

are representative for the observation that the most frequent reason for a fit 

rejection is the presence of a single or few tail events. Similar cases are also 

found among the control samples. The P-value for a χ2-test for rejection of a 

negative binomial fit is given for the distribution in cells and controls. 
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Modelling technical variability: Model I. (a) The transcript count in control 

samples was normalized to the cross-sample median. Different functions 

(normal distribution, lognormal distribution, and negative binomial distribution) 

were fitted to the normalized count distribution in cells and controls. The 

goodness of fit was assessed by a χ2-test. The barplot shows the number of 

genes for which a given distribution was not rejected (χ2-test P > 0.01). For 

1,567 out of 1,992 genes (79%) expressed at >5 transcripts a negative 

binomial fit was not rejected (P > 0.01). (b) For negative binomials fitted to the 

normalized count distribution across control samples, the dispersion 

parameter r is plotted against the mean µ. The parameter dependence is 

fitted by a piecewise linear function in logarithmic space (red lines). The 

piecewise linear dependence of the dispersion parameter on the mean was 

used as parameter input for the technical noise distribution. The exponent for 

the parameter dependence and R2 of the fit are given in the plot. (c) The 

average expression µ inferred from negative binomial fits is plotted against the 
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mean directly computed from normalized counts across control samples. The 

red line marks the diagonal. (d) The expression variance σ2 inferred from 

negative binomial fits using the dispersion parameter obtained from single 

gene fits (black) or as computed from the piecewise linear dependence on µ 

(green) is plotted against the variances directly computed from normalized 

counts across control samples. The red line marks the diagonal. 
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Supplementary Figure 6 
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Modelling technical variability: Model II. (a) A regression of the number of 

sequenced transcripts on the predicted number of spike-in molecules was 

computed for each control sample. The plot shows the data and the 

regression line (red) for a single control sample. The slope corresponds to the 

conversion factor βII. (b) Histogram of βII across all cells and control samples. 

The count distribution was fitted by a Γ-distribution (solid green line), which 

was not rejected by a χ2-test (P < 0.61). The uncertainty of the fit is indicated 

as broken green line. (c) Total technical variability across control samples 

follows a product of a Poisson distribution, capturing the sampling noise, and 

the Γ-distribution reflecting variability in global efficiency. The product 
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distribution cannot be computed analytically, but was simulated for a wide 

range of parameters and again found to correspond to a Γ-distribution. The 

histogram shows the product distribution for the mean expression of Pou5f1 

and the Γ-distribution of conversion factors as predicted for control samples. 

The Γ-distribution was not rejected by a χ2-test (P < 0.20). (d) The expression 

average µ inferred from negative binomial fits using the mean parameter 

obtained from single gene fits (black) or as computed from the model (green) 

is plotted against the mean directly computed from counts across control 

samples. The red line marks the diagonal. (e) The expression variance 

σ2 inferred from negative binomial fits using the dispersion parameter 

obtained from single gene fits (black) or as computed from the model (green) 

is plotted against the variances directly computed from counts across control 

samples. The red line marks the diagonal. 
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Supplementary Figure 7 
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Modelling technical variability: Model III. (a) The conversion factor βIII was 

computed for a given spike-in species in all samples as the ratio of sequenced 

and added number of spike-in transcripts, and a Γ-distribution was fitted to 

this distribution. The Γ-distribution was not rejected by a χ2-test (P < 0.06). 

The plot displays the count histogram of βIII and the maximum likelihood fit. 

The standard error of the fit is indicated as broken green line. (b) A χ2-test 

was performed for spike-in count distributions at all available expression 

levels. The log10 P-value is plotted against the expression level. For data 

points below the broken red line, the Γ-distribution fit was rejected. However, 
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the performance of a χ2-test strongly depends on the number of data points 

and increasing the number of samples would most likely lead to better fits. (c) 

Linear regression of the rate parameter of the Γ-distribution fits on the number 

of spike-in RNAs in logarithmic space (R2 = 0.90). (d) Linear regression of the 

shape parameter of the Γ-distribution fits on the number of spike-in RNAs in 

logarithmic space (R2 = 0.83). (e) The expression average µ inferred from 

negative binomial fits using the mean parameter obtained from single gene 

fits (green) or as computed from the model (black) is plotted against the mean 

directly computed from counts across control samples. The red line marks the 

diagonal. (f) The expression variance σ2 inferred from negative binomial fits 

using the dispersion parameter obtained from single gene fits (green) or as 

computed from the model (black) is plotted against the variances directly 

computed from counts across control samples. The red line marks the 

diagonal. 
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Inference of biological variability.  A negative binomial describing the 

number of transcripts available for CEL-seq and the biological variability 

between single mESCs was obtained by deconvolving out technical variability 

from the count distribution measured for mESCs. Distribution parameters µ 

(mean) and r (dispersion) were inferred by a minimization procedure. (a) The 

contour plot shows the log2 expression subject to minimization (Methods, 

equation (21)) as a function of the inferred parameters for Pou5f1.  The 

parameter combination for the unique minimum identified by the algorithm is 

highlighted in turquoise and parameter values are given in the lower right 
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corner. (b) Count distribution for Pou5f1 transcripts measured in cells (red), 

control samples (grey), and biological count distribution after deconvolution of 

technical variability (turquoise). A Poisson distribution is shown to visualize 

the degree of overdispersion. (c) Contour plot for Sox2. Details as in (a). (d) 

Count distributions for Sox2. Details as in (b). (e) Contour plot for Klf4. Details 

as in (a). (f) Count distributions for Klf4. Details as in (b). 
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Sensitivity of CEL-seq compared to smFISH. (a) The CV measured in cells 

as a function of average expression across all cells is shown. The candidates 

validated by smFISH (purple) cover most of the dynamic range. The 

Poissonian noise level  (black solid line) and the global efficiency noise level 

are indicated (black broken line). (b) Comparison of transcript counts obtained 

by CEL-seq and smFISH. Error bars are derived from the standard error of 

the fit. A linear regression (red line) indicates that smFISH is almost seven 

times as sensitive as CEL-seq. (c) The conversion factor β as computed from 

spike-ins and as derived form smFISH (assuming 100%-sensitivity of 

smFISH). (d) The plot shows the predicted biological CV (model III) as a 

function of average expression in the pool of sequenced transcripts (black) 

and after conversion of average expression to the expected level in cells 

based on the smFISH data (grey). The black dots at low expression fall on a 

line corresponding to the Poissonian limit permitted by a negative binomial 
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and become overdispersed after conversion. For the validated candidates the 

model prediction (blue), the CV measured by CEL-seq (red), and the CV 

measured by smFISH (turquoise) are shown (after conversion of average 

expression). Since our method cannot infer underdispersed biological count 

distributions, we will tend to overestimate noise for lowly expressed genes. 
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Comparison of count distribution derived from CEL-seq and smFISH. (a) 

For each gene the count distribution as measured in cells by CEL-seq (red), 

the inferred biological count distribution for model III (blue) and a Poisson 

distribution (grey) with the same mean are shown. (b) For each gene the 

smFISH derived count distribution (turquoise) is shown together with the 

count distribution as measured in cells by CEL-seq (red) and with the inferred 

biological count distribution for model III (blue) after converting the 

sequencing based distributions to the smFISH derived mean. The converted 

count distributions were computed with the sequencing derived CV and the 

smFISH derived expression level. A comparison of (a) and (b) reveals that an 

almost Poissonian biological count distribution becomes overdispersed after 

conversion. 
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 Comparison of noise predictions to a previously published method for 
inference of differential variability. To compare our biological noise 

predictions to a recently published method2 (hereafter referred to as method 

A) that predicts genes with substantial levels of biological noise we first 

processed our sequencing data for the 2i condition by the published pipeline. 

Genes with substantial levels of biological noise according to this method 

were compared to the set of genes with a biological Fano factor > 3 as 

predicted by our model III. Method A was published for read based 

quantification instead of UMI based transcript counting. (a) The plot shows the 

CV as a function of average expression after normalizing our read data by 

method A. (b) The plot shows the CV as a function of the average transcript 

number per cell quantified based on UMIs. In (a) and (b) genes with 

substantial levels of biological noise are highlighted in green and genes with a 

Fano factor >3 are highlighted in red. Spike-ins (purple) and candidates 

validated by smFISH (black) for our method are also highlighted. In (a) a 

linear fit is shown for spike-ins to outline the level of technical noise. 

Surprisingly, method A identifies variable genes almost exclusively at low 

expression and the noise level of these genes still overlaps with the technical 

noise level indicated by the spike-ins. The more highly expressed genes that 

acquire a biological Fano factor > 3 based on model III show noise levels 

clearly exceeding technical noise as measured by spike-ins in both 

normalization schemes. We point out that the highly expressed stem cell 
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markers (Pou5f1, Sox2, Pcna, Klf4) and the moderately expressed gene Tpx2 

for which we validate biological noise substantially higher than Poissonian 

sampling noise (Supplementary Fig. 10), were not identified as significantly 

variable genes by method A. 
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Supplementary Figure 12 

J1 (2i) Islam et al. (q1) Islam et al. (q2)

10
00

0
50

00
0

20
00

00
N

um
be

r o
f s

eq
ue

nc
ed

 tr
an

sc
rip

ts
N

um
be

r o
f s

eq
ue

nc
ed

 E
R

C
C

 s
pi

kH
ïL
QV

J1 (2i) Islam et al. (q1) Islam et al. (q2)

log2 Average transcript count (J1 2i)

lo
g 2 A

ve
ra

ge
 tr

an
sc

rip
t c

ou
nt

 (I
sl

am
 e

t a
l. 

20
13

)

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Fr

eq
ue

nc
y

median norm.

log2 Fano(biol)/Fano(cell)

Fr
eq

ue
nc

y

ï��� ï��� ï��� ï��� 0.0

0
20

40
60

80

cell-to-cell variability
biological variability

log2 Fano

a b

c d

e

log2 Average transcript count

lo
g 2 

C
V

0 5 10

0
5

10

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Dppa3

Esrrb

Gapdh

Khdc3

Klf2
Klf4

Myc
Nanog

Pou5f1

Prdm14

Sox2

Zfp42

R2=0.82 ●

●

endogenous genes
spikHïLQV

50
0

10
00

20
00

50
00

20
00

0

ï� 0 5 10

ï�
ï�

ï�
0

1
2

3 ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●
●●

●

●

●

●

● ●

●

● ●

● ●

●

● ●

●

●

endogenous genes
spikHïLQV

model III

 
Model application to a PCR based single cell sequencing method3. (a) 

Comparison of the distribution of total transcript counts of endogenous genes 

across all sequenced cells for our J1 cells in 2i condition and the published R1 

mESC data. For the latter we show the distribution after processing the 

sequencing data with a modified version of our pipeline and applying the 

same filtering steps as Islam et al.3 (q1), and for the published raw molecule 

count data (q2). We found that average transcript number quantified with q1 

and q2 are highly correlated (R2=0.84) and yield similar transcript numbers. 

(b) Correlation between transcript counts in our J1 cells in 2i condition and the 
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published R1 data quantified with our pipeline (q1). The diagonal (black solid 

line) and a regression for the offset (black broken line), representing the 

average fold change, are shown. A separate regression of the offset is shown 

for the ERCC spike-ins (green broken line). A number of pluripotency related 

genes is highlighted in red. (c) Same as in (a), but for the set of 92 ERCC 

spike-ins. Based on method q1, we measure two times more spike-in RNA 

while according to the published count data (q2) eight times more spike-in 

RNA was sequenced. The authors indicated that in total 28,000 ERCC 

transcripts were spiked into each sample, which is a factor of 1.12 more than 

in our method. (d) The CV as a function of the average transcript number for 

the published R1 data. Model III (blue line) provides a good estimate of the 

technical noise represented by the spike-in data (green). Poissonian noise 

(black solid line) and noise due to cell-to-cell variability of sequencing 

efficiency (black broken line) are indicated. The CV of endogenous genes 

measured in cells is also indicated (grey). The authors did not sequence pool-

and-split controls. (e) Distribution of Fano factors as measured in cells, and as 

inferred for biological variability using model III for the published R1 data. The 

distribution after normalizing transcript numbers to the median without 

deconvolution of sampling noise is also shown. The inset shows a histogram 

of log2-fold changes between Fano factors before and after deconvolution of 

technical noise. 
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Supplementary Figure 13 
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Validation of predicted biological variability by smFISH for mESCs 
cultured in serum. (a) Correlation between the number of sequenced 

transcripts in single mESCs or controls cultured in serum and the average 

across all cells or control samples, respectively. Correlation is high for all cells 

but on average lower and more variable than for control samples. (b) 

Validation of the inferred biological CV for the stem cell markers Pou5f1, 

Sox2, Klf4 and Pcna, the moderately expressed gene Tpx2, and the lowly 

expressed genes Sohlh2, Gli2, and Stag3. To validate model I, smFISH 

derived transcript counts were normalized by cell area. Residual variability of 

total mRNA content remains and explains deviations from the model 

predictions. Shown is the CV measured in cells, the inferred biological CV 

based on the three models, and the CV measured with smFISH. In the model 

I comparison, the CV after normalizing to the median transcript number 

without deconvolution of sampling noise is shown. Error bars are derived from 

estimated standard errors of the negative binomial distribution parameters 

obtained by numerical fits. Lowly and more highly expressed genes are 
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shown in separate plots to increase visual resolution. The ordering of the 

genes is the same as in Figure 3c. Data for Notch1 are not shown because 

on average only 0.6 transcripts per cell have been sequenced and the 

uncertainty of the CV prediction is large. In comparison to mESCs cultured in 

2i, smFISH data for serum culture contain more technical noise due to 

background fluorescence in feeder cells. This explains that the smFISH 

derived CV is on average slightly increased in comparison to the sequencing 

derived value. The uncertainty (larger error bars) of the sequencing derived 

values is also increased compared to 2i conditions due to the smaller number 

of sequenced cells (74 mESCs in 2i versus 44 mESCs in serum). 
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Biological noise depends on culture conditions of mESCs. (a) Cumulative 

distribution of log2-fold changes between Fano factors for cells grown in 

serum and 2i condition. Shown are the distributions for cells (red), controls 

(grey) and the inferred biological distribution (turquoise). The medians are 
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indicated as vertical lines. (b) Scatter plot of the CV in serum versus 2i 

condition. Genes that have different CVs within their error bars between the 

two conditions are colored in pink (CV(serum) > CV(2i)) and brown 

(CV(serum) < CV(2i)). Stem cell markers (Pou5f1, Sox2) cell cycle related 

genes (Ccna2, Ccnd1, Ccnb1) and a housekeeping gene (Gapdh) are 

highlighted in blue. Error bars are based on standard errors of fitting 

parameters.  (c) Comparison of CV log2-fold changes in serum versus 2i 

condition as predicted by model III and as measured with smFISH. Error bars 

are derived from estimated standard errors of the negative binomial 

distribution parameters obtained by numerical fits.  Only more highly 

expressed genes, which were included in the noise comparison between the 

two conditions are shown. The model predicts correctly the sign of the 

variability change between both conditions and gives a good estimate of the 

difference predicted by smFISH. The p-value for the smFISH based CV fold 

change to be significantly different from zero is indicated for each gene. 

Pou5f1 and Pcna show significantly enhanced CVs in serum versus 2i 

condition. (d) Scatter plot of average expression µ in serum versus 2i 

condition. Coloring as in Figure 3f. (e) Cumulative distribution of fold changes 

between serum and 2i conditions for all genes, and genes with differential 

variability. While genes with increased variability in serum versus 2i condition 

show increased expression in serum condition the opposite is true for genes 

with decreased variability. Wilcoxon’s rank sum test p-value for a comparison 

to the distribution of all genes is indicated. (f) Comparison of observed 

average expression fold change between serum and 2i condition to the fold 

change observed by bulk sequencing of E14 ESCs in serum versus 2i 

condition extracted from the literature 4. A linear regression (red line) reveals 

a good correlation (R = 0.53) between data obtained in different cell lines with 

different methods. (g) Same as in (e) but based on recently published bulk 

data in E14 mESCs. (h) Scatter plot of log2-fold changes between 2i and 

serum condition in burst frequency versus size. Coloring as in Figure 3f. Only 

data points for genes with a Fano-factor > 1.5 in both conditions are shown. 
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Supplementary Figure 15 Supplementary Figure 15
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Comparison of count distributions derived from CEL-seq and smFISH in 
serum versus 2i condition. For each gene the smFISH derived count 

distribution (turquoise) is shown together with the count distribution as 

measured in cells by CEL-seq (red) and with the inferred biological count 

distribution for model III (blue) after converting the sequencing based 

distributions to the smFISH derived mean. The converted count distributions 

were computed with the sequencing derived CV and the smFISH derived 

expression level. Distributions are displayed for 2i (solid lines) and serum 

(broken lines) condition. All tested candidates with confident noise prediction 

(> 5 transcripts per cell on average) were included. 
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Supplementary Table 1 
 
a 

2i Lane 1 
Control 1 Control 2 Cells 1 Cells 2 

# of reads 41,751,147 23,764,721 31,287,097 20,117,132 
# of mapped reads 21,636,338 13,001,381 11,002,275 8,407,015 
% of mapped reads 51.8% 54.7% 35.2% 41.8% 

2i Lane 2 
Control 1 Control 2 Cells 1 Cells 2 

# of reads 42,211,075 24,027,498 31,273,378 20,307,476 
# of mapped reads 21,711,713 13,020,604 10,889,938 8,418,155 
% of mapped reads 51.4% 54.2% 34.8% 41.5% 

 

b 

serum Lane 1 
Control 1 Control 2 Cells 1 Cells 2 

# of reads 34,439,319 31,821,460 33,219,585 30,956,532 
# of mapped reads 13,100,787 10,003,769 9,962,452 8,735,205 
% of mapped reads 38.0% 31.4% 30.0% 28.2% 

serum Lane 2 
Control 1 Control 2 Cells 1 Cells 2 

# of reads 34,143,410 32,160,773 33,616,668 31,252,645 
# of mapped reads 13,604,363 10,736,439 10,679,513 9,408,096 
% of mapped reads 39.8% 33.4% 31.8% 30.1% 

 

c  

2i Number 

Mapped 
reads per 
cell 

Mapped UMIs  
per cell 

Transcripts 
per cell 

cells 74 239,866 39,742 44,170 
controls 76 421,411 59,419 69,242 

 

d 

serum Number 

Mapped 
reads per 
cell 

Mapped UMIs  
per cell 

Transcripts 
per cell 

cells 44 229,342 33,792 39,700 
controls 56 284,557 55,310 64,520 
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Read statistics. (a) For cells grown in 2i culture condition and the 

corresponding controls, two libraries were sequenced. Material of each library 

was split and sequenced on two lanes. On each lane cells and controls from 

all libraries were barcoded with Illumina barcodes and sequenced together. 

The table contains the number of reads, and number and fraction of mapped 

reads. (b) Same as in (a), but for cells grown in serum culture. (c) For cells 

and controls grown in 2i culture condition, the number of cells and control 

samples is given and the average number of reads, UMIs and transcripts per 

cell is indicated. (d) Same as in (c), but for cells grown in serum culture. 
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Supplementary Table 2 (online) 
  

GO terms enriched among genes with increased expression variability 
in serum versus 2i culture condition. A full list of GO terms enriched 

among genes with increased gene expression variability in serum versus 2i 

condition can be found in Supplementary Table 2 online. Enriched biological 

processes and enriched molecular functions are given as separate lists. Only 

significantly enriched GO-terms (P < 0.05) were included. The lists indicate 

the GO-term ID, the hypergeometric P-value, the odds ratio, the expected 

number of genes associated with each GO-term, the observed number of 

genes for each GO-term, the size of the GO-term (total number of genes 

associated) and a short description. For the inference of over-represented GO 

terms, the set of differentially variable genes was compared to the universe of 

all genes expressed in the two conditions. The GOstats package was used to 

compute GO enrichment in R. 

 

 

Supplementary Table 3 (online) 
 

Probe set composition of smFISH probes used. Each column represents a 

probe set for the gene specified in the column header. All probes were labeled 

on the 3’ end with TMR, Alexa594 or Cy5. A full list of all probe sequences 

can be found in Supplementary Table 3 online. 
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Supplementary Note 1 
 

Analysis of primary sequencing data 

 

Sequencing of our cell and control libraries on an Illumina HiSeq2500 platform 

yielded ~120 million reads per lane. Of those, we could map 35%-42% and 

51%-55% of the reads in our cell and control libraries, respectively, to our 

transcript models comprising RefSeq gene models and ERCC spike-in 

sequences (Supplementary Table 1 and Methods). To investigate whether the 

additional reads derived from introns, we mapped to pre-mRNA, which only 

led to a minor increase of 5% mapped reads for cells and controls. To test 

whether the remaining reads derived from primer sequence due to self- or 

cross-hybridization, we performed an 8mer enrichment analysis since direct 

mapping of the entire reads to primer sequences did not yield substantial 

mappings. We measured a strong overlap of 8mers enriched in primer 

sequences and reads that did not map to our gene models (Supplementary 
Fig. 1a, b). Out of the top 100 most highly enriched 8mers in primer 

sequences, at least one is contained in 3,605 out of 10,000 non-mapped 

reads, but only in 489 out of 10,000 mapped reads. These data suggest that a 

major fraction of non-mapped reads derive from primer sequences. For 

mapped and non-mapped reads, the sequencing quality was high in cells and 

controls. In all cases  > 75% of all reads have and average Phred score of 30 

or higher corresponding to 99.9% basecall accuracy (Supplementary Fig. 1c, 
d). We note that we could also map 29% of all reads for a recently published 

PCR based single cell sequencing method3 and that our derived transcript 

counts correspond well to the published count data. 
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Supplementary Note 2 
 

Three models for technical noise in single cell sequencing data 

 
In the first model (model I) we eliminated most of the tube-to-tube variability by 

normalizing counts in each sample to the cross-sample median (Fig. 2a). 

Subsequently, we fitted negative binomials to the normalized distributions 

(Supplementary Fig. 5a). A negative binomial is controlled by two parameters, the 

mean and the dispersion parameter, and we observed a piecewise linear 

dependence of the dispersion parameter on the mean (Supplementary Fig. 5b). 

This dependence defines the technical noise distribution for all expression levels. 

Mean and variance obtained by model I were in excellent agreement with the 

corresponding quantities directly calculated from transcript counts (Supplementary 

Fig. 5c, d). 

For model II and III global tube-to-tube variability of sequencing efficiency 

was derived from the statistics of the sequenced spike-ins. To calculate β, we 

inferred a Γ-distribution for the fraction of transcripts of a given gene available for 

sequencing. Molecules are randomly sampled from this pool. The number of 

sequenced transcripts thus corresponds to a Poisson distribution with a Γ-distributed 

rate, which equals a negative binomial and therefore can be fitted to the observed 

distribution. 

In model II, βII was determined for each sample from a regression of the 

number of sequenced spike-in transcripts on the number of spike-in molecules added 

to each sample (Fig. 2b and Supplementary Fig. 6a). The statistics of βII were fitted 

by a Γ-distribution (Supplementary Fig. 6b) and, after superimposing Poissonian 

sampling noise, parameters for the negative binomial that describes technical noise 

within model II could be derived (Supplementary Fig. 6c). The first two moments of 

this distribution were in very good agreement with moments directly computed from 

transcript counts (Supplementary Fig. 6d, e). 

In model III, the tube-to-tube variability was conditioned on the expression 

level (Fig. 2b). For each spike-in species, βIII was computed in every sample and a 

Γ-distribution was fitted to the distribution of βIII across all samples (Supplementary 

Fig. 7a, b). The dependence of the Γ-distribution parameters on mean expression 

could be explained by a simple linear model (Supplementary Fig. 7c, d). Using 

these dependencies, we inferred parameters of the negative binomial that describe 

the technical noise. The first two moments of this distribution corresponded well to 
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the count derived moments (Supplementary Fig. 7e, f). A detailed description of all 

three models is given in Online Methods. Importantly, all three models do not require 

pool-and-split controls. Measuring spike-in RNA of known concentration across the 

entire dynamic range is sufficient to fit all models.  
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Supplementary Note 3 
 
Comparison to a PCR based single cell sequencing method 
 
We tested the performance of our approach on data generated by a different 

sequencing technique, based on PCR amplification of starting material. We 

applied model III to recently published single cell sequencing data for R1 

mESCs generated by this method with integrated UMIs of length five3. 

Overall, the average number of transcripts was very similar to our J1 cells in 

2i condition (Supplementary Fig. 15a), and correlation of average expression 

was high (R2 = 0.82) (Supplementary Fig. 15b). This was surprising, since 

Islam et al. reported an efficiency of 48%. Even at high expression we did not 

see a saturation effect in the comparison of transcript numbers, suggesting 

that the UMI of length 4 was sufficient. After extending the annotated spike-in 

sequences with 5’ leader sequence that is likely derived from in vitro 

transcription of these sequences and was identified from sequencing reads 

(personal communication), we could reproduce the published spike-in 

expression which was six-fold higher than for our J1 cells sequenced in 2i 

condition (Supplementary Fig. 15c). This could either mean that the mRNA 

content of J1 and R1 cells is six-fold different, or that the spike-in RNA is less 

degraded in comparison to cellular RNA for the published data. Regardless of 

these differences, we found that our model reproduces the technical noise in 

these data very well, suggesting that the dominating sources were again 

sampling noise and global tube-to-tube variability, although the latter was 

strongly reduced compared to our data (Supplementary Fig. 15d). This was 

not surprising, since amplification was carried out on a microfluidic platform.  
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Supplementary Note 4 
 
Exploring the origin of differential gene expression noise in 2i versus 
serum 

 
To investigate the origin of differential variability in 2i condition versus serum culture 

condirton we first compared mean expression in both conditions and found that 

genes with increased variability were on average also more highly expressed in 

serum (Supplementary Fig. 14d, e). We could confirm the observed expression 

differences between the two conditions in recently published bulk RNA-seq data for a 

different ES cell line4 (Supplementary Fig. 14f, g). Intuitively, high expression 

should not affect the Fano factor and even lead to lower variability quantified by the 

CV. However, this is only true for continuous transcription at a fixed rate, but not for 

bursting transcription. We therefore mapped our inferred parameters on a two state 

model for bursting transcription5 and computed quantities that scale with burst size 

and frequency (Online Methods). The change in these quantities when switching 

from serum to 2i condition indicates that increased variability in serum culture is a 

consequence of lower burst frequency, but larger burst size (Supplementary Fig. 

14h). 

We finally explored the function of the more variable genes and, using Gene 

Ontology (GO) enrichment analysis. We compared GO terms of the more variable 

genes to a background of genes with similar expression (more than five transcripts) 

and discovered an over-representation of diverse functional categories related to 

RNA processing and protein production (Supplementary Table 2). For instance, 

translation initiation factors were more than threefold enriched (hypergeometric test P 

< 2 x 10-3) and structural constituents of the ribosome were more than twofold 

enriched among variable genes (hypergeometric test P < 3 x 10-3). Expression of 

these genes was at the same time 1.6-fold higher in serum condition. This 

observation provides evidence that anabolic activity is not only increased, but also 

more variably when culturing mESCs in serum versus 2i medium. Notably, higher 

expression of genes associated with anabolic activity in serum is consistent with a 

previous finding that anabolic activity is enhanced by Gsk3, which is inhibited in 2i 

medium6. 

Taken together, we discovered a global increase of gene expression noise 

due to less frequent, but larger expression bursts when culturing mESCs in serum 
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versus 2i medium, and identified enrichment of genes involved in mRNA processing 

and protein synthesis among the more variable genes. 
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