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W primers
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GAACTCTG
GAACGTGT
CTGTAGAA
CTGAACGT
CTCTGAAC
CTCGGTGG
CTACAGTC

CTACACGT
CGTTCAGA
CGTGTAGA
CGTCGGAC
CGGACTGT
CGATCTGA
CGATCGTC
CGAGATCT
CGACGATC
CCGAGATC
CCGACGAT
CCACCGAG
CATCAGAT

CAGTCCGA
CAGATCGT
CAGAGTTC
CACGTTCA
CACCGAGA
ATCTGATG

ATCTCGGT
ATCTACAC

ATCGTCGG
ATCAGATC

AGTTCTAC

AGTCCGAC
AGATCTCG
AGATCTAC

AGATCGTC
AGAGTTCT
AGAACTCT
ACTGTAGA
ACTCTGAA
ACGTTCAG
ACGTGTAG
ACGATCTG
ACGATCGT
ACCGAGAT
ACAGTCCG
ACACGTTC
AACTCTGA
AACGTGTA
AAAAACCC
AAAAAAAA
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enriched motifs in 10,000 randomly drawn mapped reads the hypergeometric

enrichment p-value is shown (red). For comparison the enrichment p-value of

the same motifs in the primer sequences is shown. (b) Same as (a), but for

10,000 randomly drawn non-mapped reads. A comparison of (a) and (b)

reveals a strong overlap of motifs enriched in non-mapped reads and primer
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sequences. In (a) and (b) data for cells are shown. Results for controls are
highly similar. (¢) Cumulative distribution of average per reads Phred quality
score for mapped reads, non-mapped reads and non-mapped reads
containing primer derived 8-mers in cell samples. (d) Same as (c), but for

control samples.
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Unique molecular identifiers (UMls) allow quantification of absolute

transcript number. (a) Number of sequenced spike-in RNAs in individual
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samples as a function of the estimated number of molecules based on spike-
in concentration. The intercept represents the conversion factor § and
corresponds to the fraction of RNA recovered by sequencing (3.3% for
controls and 3.6% for cells). The red dots and error bars indicate the mean
and standard deviation, respectively, of each spike-in across samples. (b)
Histogram of logz-ratio between number of reads and number of UMIs per
gene. Each UMI was sequenced on average seven times (see Supplementary
Table 1). Transcripts were thus over-sequenced sevenfold. (¢) Predicted
number of transcripts as a function of the number of observed UMIs
(Methods). Genes, sequenced with more than 500 transcripts can still be
reliably quantified using UMIs of length four. Since in our hands CEL-seq has
a sensitivity of < 10%, genes expressed at several thousand copies can still
be quantifies with UMIs of length 4. Error bars for number of UMIs at a given
expression level were derived based on random counting statistics. A direct
translation of UMIs into transcript counts (red line) only works at low
expression. (d) Average number of transcripts across cells with a given
number of observed UMIs. Less than 10% of the cells contain few transcripts
with >200 sequenced UMIs. A 4 bp random barcode as UMI is thus sufficient.
Simulated distributions of the number of UMIs for the derived transcript
abundance are displayed for a UMI length of 5 and 6 bases. The distributions
become distinguishable at ~150 UMIs per gene. Although a saturation of the
4bp UMI distribution is apparent, transcript numbers can be predicted with
confidence even at 200 UMIs per gene (see error bars in (c)). (e) Comparison
of mean expression estimates across all cells based on transcript counts
(TPM), versus read counts (RPM). Differences greater than twofold can be
observed across the entire dynamic range, suggesting that many genes are
affected by PCR amplification bias. (f) Cells were split into two groups and
average expression in TPM was compared between these two groups. In
contrast to (e) strong differences only occur at low expression due to sampling
noise. (g) Histogram of log,-fold change in the coefficient of variation (CV)
computed based on reads per million (RPM) versus transcripts per million
(TPM).
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Gene expression in single mESCs is highly correlated. (a) Number of

sequenced transcripts for pluripotency markers Pou5f1, Sox2, and Kif4 as

well as differentiation markers Brachyury (mesoderm), Otx2 (ectoderm), and

Gata4 (endoderm) in cells and control samples. In contrast to robustly

expressed plutipotency markers, differentiation markers are only very lowly

expressed in all samples. Sequencing for cells and controls was performed in
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two batches each, due to a limited number of sample barcodes. The second
batch of cells yielded on average more transcripts than the first. (b)
Correlation between the number of sequenced transcripts in single cells or
controls and the average across all cell or control samples, respectively.
Correlation is high for all cells but on average lower and more variable than
for control samples. (c¢) Spike-in RNA (1 pl of ERCC92 group 1 spike-in mix'
diluted to 1:2,500,000 was added to each sample) was used to estimate the
number of transcripts per cell. A regression of sequenced spike-in transcripts
on the predicted number of spike-in molecules yields the conversion factor

B which reflects the sequenced fraction of RNA with an average of 0.033 in
controls and 0.036 in cells. The conversion factor is shown in the upper panel.
Error bars correspond to the standard error of the regression parameters. R?
between sequenced and predicted number of spike-ins is shown in the lower
panel. Mean and standard deviation are indicated as solid and broken black
lines, respectively. (d) Scatter plot of the total number of sequenced
transcripts in control samples versus the conversion factor 3. The correlation
(R = 0.91) suggests that variability of p reflects variable efficiencies for

different tubes.
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Data fitting confidence depends on the mean and is similar in cells and
controls. We conducted simulations to investigate the dependence of the p-
value obtained by a negative binomial fit to a set of random numbers sampled
from a negative binomial distribution. To reflect the properties of our data we
chose a size of the data set equal to the number of cells in 2i conditions. To
perform the simulation we generated random numbers from distributions with
varying mean and a size parameter that scales with the mean. To these
random numbers we then fitted a negative binomial. At each mean value we

sampled 50 times. (a) Distribution of p-values for rejecting a negative binomial
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as a function of the mean. For mean values of 5 or lower the fits are almost
always rejected. (b) The mean obtained by the fit as a function of the mean of
the input distribution. (¢) The Fano factor obtained from the fit as a function of
the mean of the input distribution. Even at low mean values the fitting
procedure yields overall good estimates of the true parameters. In (a-c) the
size parameter equals two times the mean, yielding a fixed dispersion of 1.5,
independent of the mean. (d) Histogram of the fraction of genes for which the
negative binomial fit is not rejected (P > 0.01) in cells (red) and control
samples (blue) as a function of minimum mean expression. The fraction of
genes with confident fits saturates at a minimum average of five transcripts
per cell. About 80% of the genes follow a negative binomial. Importantly, this
number is similar in cells and control samples, suggesting that the reason for
rejecting a negative binomial is not in general increased cell-to-cell variability,
due to, for instance, bimodality. We screened the remaining cases manually
and found that in all cases a single or a few tail events caused the fit to fail.
We checked in more detail for bimodal distributions and identifed genes,
which display bimodal distributions in the cells but not in the controls using
Hartigan’s test for bimodality (P < 0.01). The fraction of bimodal genes
(yellow) is always low and converges against zero for highly expressed
genes. (e) Three examples of highly expressed genes for which the negative
binomial fit is rejected in cells but not in the control samples. These examples
are representative for the observation that the most frequent reason for a fit
rejection is the presence of a single or few tail events. Similar cases are also
found among the control samples. The P-value for a x*-test for rejection of a

negative binomial fit is given for the distribution in cells and controls.
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Modelling technical variability: Model I. (a) The transcript count in control
samples was normalized to the cross-sample median. Different functions
(normal distribution, lognormal distribution, and negative binomial distribution)
were fitted to the normalized count distribution in cells and controls. The
goodness of fit was assessed by a y*-test. The barplot shows the number of
genes for which a given distribution was not rejected (x*test P > 0.01). For
1,567 out of 1,992 genes (79%) expressed at >5 transcripts a negative
binomial fit was not rejected (P > 0.01). (b) For negative binomials fitted to the
normalized count distribution across control samples, the dispersion
parameter r is plotted against the mean u. The parameter dependence is
fitted by a piecewise linear function in logarithmic space (red lines). The
piecewise linear dependence of the dispersion parameter on the mean was
used as parameter input for the technical noise distribution. The exponent for
the parameter dependence and R? of the fit are given in the plot. (¢c) The

average expression u inferred from negative binomial fits is plotted against the



mean directly computed from normalized counts across control samples. The
red line marks the diagonal. (d) The expression variance o inferred from
negative binomial fits using the dispersion parameter obtained from single
gene fits (black) or as computed from the piecewise linear dependence on u
(green) is plotted against the variances directly computed from normalized

counts across control samples. The red line marks the diagonal.
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Modelling technical variability: Model Il. (a) A regression of the number of
sequenced transcripts on the predicted number of spike-in molecules was
computed for each control sample. The plot shows the data and the
regression line (red) for a single control sample. The slope corresponds to the
conversion factor . (b) Histogram of 3 across all cells and control samples.
The count distribution was fitted by a I'-distribution (solid green line), which
was not rejected by a y>-test (P < 0.61). The uncertainty of the fit is indicated
as broken green line. (c) Total technical variability across control samples
follows a product of a Poisson distribution, capturing the sampling noise, and

the I"-distribution reflecting variability in global efficiency. The product
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distribution cannot be computed analytically, but was simulated for a wide
range of parameters and again found to correspond to a I'-distribution. The
histogram shows the product distribution for the mean expression of Pou5f1
and the I"-distribution of conversion factors as predicted for control samples.
The I'-distribution was not rejected by a y*test (P < 0.20). (d) The expression
average u inferred from negative binomial fits using the mean parameter
obtained from single gene fits (black) or as computed from the model (green)
is plotted against the mean directly computed from counts across control
samples. The red line marks the diagonal. (e) The expression variance

o inferred from negative binomial fits using the dispersion parameter
obtained from single gene fits (black) or as computed from the model (green)
is plotted against the variances directly computed from counts across control

samples. The red line marks the diagonal.
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Modelling technical variability: Model Ill. (a) The conversion factor p;; was
computed for a given spike-in species in all samples as the ratio of sequenced
and added number of spike-in transcripts, and a I'-distribution was fitted to
this distribution. The I-distribution was not rejected by a y*test (P < 0.06).
The plot displays the count histogram of i and the maximum likelihood fit.
The standard error of the fit is indicated as broken green line. (b) A y*-test
was performed for spike-in count distributions at all available expression
levels. The logo P-value is plotted against the expression level. For data

points below the broken red line, the I'-distribution fit was rejected. However,
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the performance of a x’-test strongly depends on the number of data points
and increasing the number of samples would most likely lead to better fits. (c)
Linear regression of the rate parameter of the I'-distribution fits on the number
of spike-in RNAs in logarithmic space (R* = 0.90). (d) Linear regression of the
shape parameter of the I'-distribution fits on the number of spike-in RNAs in
logarithmic space (R* = 0.83). (e) The expression average u inferred from
negative binomial fits using the mean parameter obtained from single gene
fits (green) or as computed from the model (black) is plotted against the mean
directly computed from counts across control samples. The red line marks the
diagonal. (f) The expression variance o” inferred from negative binomial fits
using the dispersion parameter obtained from single gene fits (green) or as
computed from the model (black) is plotted against the variances directly
computed from counts across control samples. The red line marks the

diagonal.
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Inference of biological variability. A negative binomial describing the
number of transcripts available for CEL-seq and the biological variability
between single mMESCs was obtained by deconvolving out technical variability
from the count distribution measured for mESCs. Distribution parameters u
(mean) and r (dispersion) were inferred by a minimization procedure. (a) The
contour plot shows the log, expression subject to minimization (Methods,
equation (21)) as a function of the inferred parameters for Pou5f1. The
parameter combination for the unique minimum identified by the algorithm is

highlighted in turquoise and parameter values are given in the lower right
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corner. (b) Count distribution for Pou5f1 transcripts measured in cells (red),
control samples (grey), and biological count distribution after deconvolution of
technical variability (turquoise). A Poisson distribution is shown to visualize
the degree of overdispersion. (¢) Contour plot for Sox2. Details as in (a). (d)
Count distributions for Sox2. Details as in (b). (e) Contour plot for Kif4. Details
as in (a). (f) Count distributions for Kif4. Details as in (b).
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Sensitivity of CEL-seq compared to smFISH. (a) The CV measured in cells
as a function of average expression across all cells is shown. The candidates
validated by smFISH (purple) cover most of the dynamic range. The
Poissonian noise level (black solid line) and the global efficiency noise level
are indicated (black broken line). (b) Comparison of transcript counts obtained
by CEL-seq and smFISH. Error bars are derived from the standard error of
the fit. A linear regression (red line) indicates that smFISH is almost seven
times as sensitive as CEL-seq. (¢) The conversion factor § as computed from
spike-ins and as derived form smFISH (assuming 100%-sensitivity of
smFISH). (d) The plot shows the predicted biological CV (model Ill) as a
function of average expression in the pool of sequenced transcripts (black)
and after conversion of average expression to the expected level in cells
based on the smFISH data (grey). The black dots at low expression fall on a

line corresponding to the Poissonian limit permitted by a negative binomial



and become overdispersed after conversion. For the validated candidates the
model prediction (blue), the CV measured by CEL-seq (red), and the CV
measured by smFISH (turquoise) are shown (after conversion of average
expression). Since our method cannot infer underdispersed biological count

distributions, we will tend to overestimate noise for lowly expressed genes.
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Comparison of count distribution derived from CEL-seq and smFISH. (a)
For each gene the count distribution as measured in cells by CEL-seq (red),
the inferred biological count distribution for model Il (blue) and a Poisson
distribution (grey) with the same mean are shown. (b) For each gene the
smFISH derived count distribution (turquoise) is shown together with the
count distribution as measured in cells by CEL-seq (red) and with the inferred
biological count distribution for model Il (blue) after converting the
sequencing based distributions to the smFISH derived mean. The converted
count distributions were computed with the sequencing derived CV and the
smFISH derived expression level. A comparison of (a) and (b) reveals that an
almost Poissonian biological count distribution becomes overdispersed after

conversion.
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Comparison of noise predictions to a previously published method for
inference of differential variability. To compare our biological noise
predictions to a recently published method? (hereafter referred to as method
A) that predicts genes with substantial levels of biological noise we first
processed our sequencing data for the 2i condition by the published pipeline.
Genes with substantial levels of biological noise according to this method
were compared to the set of genes with a biological Fano factor > 3 as
predicted by our model Ill. Method A was published for read based
quantification instead of UMI based transcript counting. (a) The plot shows the
CV as a function of average expression after normalizing our read data by
method A. (b) The plot shows the CV as a function of the average transcript
number per cell quantified based on UMIs. In (a) and (b) genes with
substantial levels of biological noise are highlighted in green and genes with a
Fano factor >3 are highlighted in red. Spike-ins (purple) and candidates
validated by smFISH (black) for our method are also highlighted. In (a) a
linear fit is shown for spike-ins to outline the level of technical noise.
Surprisingly, method A identifies variable genes almost exclusively at low
expression and the noise level of these genes still overlaps with the technical
noise level indicated by the spike-ins. The more highly expressed genes that
acquire a biological Fano factor > 3 based on model Ill show noise levels
clearly exceeding technical noise as measured by spike-ins in both

normalization schemes. We point out that the highly expressed stem cell



markers (Poubf1, Sox2, Pcna, KlIf4) and the moderately expressed gene Tpx2
for which we validate biological noise substantially higher than Poissonian
sampling noise (Supplementary Fig. 10), were not identified as significantly

variable genes by method A.



Supplementary Figure 12

° R2=0.82 endogenous genes
. « spike-ins .

10
L

200000
°

Number of sequenced transcripts
50000
log, Average transcript count

Gapdh

o * sz
PousT1

s
. KIf:
Nanaq 12 3, gaxz
e R Esrrb
R ]
© A it

(Islam et al. 2013)

i D;.Jpa[i
“ Prdm14
? Khdc3

10000

.
|
— |

_

T T T T T T
J1(2i) Islametal. (q1) Islam et al. (q2) 0 5 10
log, Average transcript count (J1 2i)

™ — model lll endogenous genes
b « spike-ins

20000

éE

_

log,CV

o
_

B3 .

_

Number of sequenced ERCC spike-ins

500 1000 2000 5000

T T T T T T T
J1(2i) Islametal. (q1) Islam et al. (q2) -5 0 5 10
log, Average transcript count

< — cell-to-cell variability median norm.
—— biological variability

Frequency
0 20 40 60 80

Frequency
100 200 300 400 500 600 700
) ) ) 1 ) )

-20 -1.5 -1.0 -0.5 0.0
log, Fano(biol)/Fano(cell)

.“
|!

Model application to a PCR based single cell sequencing method®. (a)
Comparison of the distribution of total transcript counts of endogenous genes
across all sequenced cells for our J1 cells in 2i condition and the published R1
mESC data. For the latter we show the distribution after processing the
sequencing data with a modified version of our pipeline and applying the
same filtering steps as Islam et al.> (q1), and for the published raw molecule
count data (q2). We found that average transcript number quantified with q1
and g2 are highly correlated (R2=O.84) and yield similar transcript numbers.

(b) Correlation between transcript counts in our J1 cells in 2i condition and the
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published R1 data quantified with our pipeline (q1). The diagonal (black solid
line) and a regression for the offset (black broken line), representing the
average fold change, are shown. A separate regression of the offset is shown
for the ERCC spike-ins (green broken line). A number of pluripotency related
genes is highlighted in red. (¢) Same as in (a), but for the set of 92 ERCC
spike-ins. Based on method g1, we measure two times more spike-in RNA
while according to the published count data (g2) eight times more spike-in
RNA was sequenced. The authors indicated that in total 28,000 ERCC
transcripts were spiked into each sample, which is a factor of 1.12 more than
in our method. (d) The CV as a function of the average transcript number for
the published R1 data. Model lll (blue line) provides a good estimate of the
technical noise represented by the spike-in data (green). Poissonian noise
(black solid line) and noise due to cell-to-cell variability of sequencing
efficiency (black broken line) are indicated. The CV of endogenous genes
measured in cells is also indicated (grey). The authors did not sequence pool-
and-split controls. (e) Distribution of Fano factors as measured in cells, and as
inferred for biological variability using model Il for the published R1 data. The
distribution after normalizing transcript numbers to the median without
deconvolution of sampling noise is also shown. The inset shows a histogram
of log»-fold changes between Fano factors before and after deconvolution of

technical noise.
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Validation of predicted biological variability by smFISH for mESCs
cultured in serum. (a) Correlation between the number of sequenced
transcripts in single mESCs or controls cultured in serum and the average
across all cells or control samples, respectively. Correlation is high for all cells
but on average lower and more variable than for control samples. (b)
Validation of the inferred biological CV for the stem cell markers Pou5f1,
Sox2, KIf4 and Pcna, the moderately expressed gene Tpx2, and the lowly
expressed genes Sohlh2, Gli2, and Stag3. To validate model |, smFISH
derived transcript counts were normalized by cell area. Residual variability of
total MRNA content remains and explains deviations from the model
predictions. Shown is the CV measured in cells, the inferred biological CV
based on the three models, and the CV measured with smFISH. In the model
| comparison, the CV after normalizing to the median transcript number
without deconvolution of sampling noise is shown. Error bars are derived from
estimated standard errors of the negative binomial distribution parameters

obtained by numerical fits. Lowly and more highly expressed genes are
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shown in separate plots to increase visual resolution. The ordering of the
genes is the same as in Figure 3c. Data for Notch1 are not shown because
on average only 0.6 transcripts per cell have been sequenced and the
uncertainty of the CV prediction is large. In comparison to mESCs cultured in
2i, smFISH data for serum culture contain more technical noise due to
background fluorescence in feeder cells. This explains that the smFISH
derived CV is on average slightly increased in comparison to the sequencing
derived value. The uncertainty (larger error bars) of the sequencing derived
values is also increased compared to 2i conditions due to the smaller number

of sequenced cells (74 mESCs in 2i versus 44 mESCs in serum).
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Biological noise depends on culture conditions of mESCs. (a) Cumulative
distribution of log,-fold changes between Fano factors for cells grown in
serum and 2i condition. Shown are the distributions for cells (red), controls

(grey) and the inferred biological distribution (turquoise). The medians are
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indicated as vertical lines. (b) Scatter plot of the CV in serum versus 2i
condition. Genes that have different CVs within their error bars between the
two conditions are colored in pink (CV(serum) > CV(2i)) and brown
(CV(serum) < CV(2i)). Stem cell markers (Poubf1, Sox2) cell cycle related
genes (Ccna2, Ccnd1, Ccnb1) and a housekeeping gene (Gapdh) are
highlighted in blue. Error bars are based on standard errors of fitting
parameters. (c) Comparison of CV logz-fold changes in serum versus 2i
condition as predicted by model Ill and as measured with smFISH. Error bars
are derived from estimated standard errors of the negative binomial
distribution parameters obtained by numerical fits. Only more highly
expressed genes, which were included in the noise comparison between the
two conditions are shown. The model predicts correctly the sign of the
variability change between both conditions and gives a good estimate of the
difference predicted by smFISH. The p-value for the smFISH based CV fold
change to be significantly different from zero is indicated for each gene.
Poub5f1 and Pcna show significantly enhanced CVs in serum versus 2i
condition. (d) Scatter plot of average expression w in serum versus 2i
condition. Coloring as in Figure 3f. (e) Cumulative distribution of fold changes
between serum and 2i conditions for all genes, and genes with differential
variability. While genes with increased variability in serum versus 2i condition
show increased expression in serum condition the opposite is true for genes
with decreased variability. Wilcoxon’s rank sum test p-value for a comparison
to the distribution of all genes is indicated. (f) Comparison of observed
average expression fold change between serum and 2i condition to the fold
change observed by bulk sequencing of E14 ESCs in serum versus 2i
condition extracted from the literature *. A linear regression (red line) reveals
a good correlation (R= 0.53) between data obtained in different cell lines with
different methods. (g) Same as in (e) but based on recently published bulk
data in E14 mESCs. (h) Scatter plot of log,-fold changes between 2i and
serum condition in burst frequency versus size. Coloring as in Figure 3f. Only

data points for genes with a Fano-factor > 1.5 in both conditions are shown.
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Comparison of count distributions derived from CEL-seq and smFISH in
serum versus 2i condition. For each gene the smFISH derived count
distribution (turquoise) is shown together with the count distribution as
measured in cells by CEL-seq (red) and with the inferred biological count
distribution for model IIl (blue) after converting the sequencing based
distributions to the smFISH derived mean. The converted count distributions
were computed with the sequencing derived CV and the smFISH derived
expression level. Distributions are displayed for 2i (solid lines) and serum
(broken lines) condition. All tested candidates with confident noise prediction

(> 5 transcripts per cell on average) were included.
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Supplementary Table 1

a

oi Lane 1
Control 1 Control 2 Cells 1 Cells 2
# of reads 41,751,147 | 23,764,721 | 31,287,097 | 20,117,132
# of mapped reads | 21,636,338 | 13,001,381 | 11,002,275 | 8,407,015
% of mapped reads 51.8% 54.7% 35.2% 41.8%
oi Lane 2
Control 1 Control 2 Cells 1 Cells 2
# of reads 42,211,075 | 24,027,498 | 31,273,378 | 20,307,476
# of mapped reads | 21,711,713 | 13,020,604 | 10,889,938 | 8,418,155
% of mapped reads 51.4% 54.2% 34.8% 41.5%
b
serum Lane 1
Control 1 Control 2 Cells 1 Cells 2
# of reads 34,439,319 | 31,821,460 | 33,219,585 | 30,956,532
# of mapped reads | 13,100,787 | 10,003,769 | 9,962,452 | 8,735,205
% of mapped reads 38.0% 31.4% 30.0% 28.2%
serum Lane 2
Control 1 Control 2 Cells 1 Cells 2
# of reads 34,143,410 | 32,160,773 | 33,616,668 | 31,252,645
# of mapped reads | 13,604,363 | 10,736,439 | 10,679,513 | 9,408,096
% of mapped reads 39.8% 33.4% 31.8% 30.1%
c
Mapped
reads per Mapped UMIs | Transcripts
2i Number | cell per cell per cell
cells 74 239,866 39,742 44,170
controls 76 421,411 59,419 69,242
d
Mapped
reads per Mapped UMIs | Transcripts
serum Number | cell per cell per cell
cells 44 229,342 33,792 39,700
controls 56 284,557 55,310 64,520




Read statistics. (a) For cells grown in 2i culture condition and the
corresponding controls, two libraries were sequenced. Material of each library
was split and sequenced on two lanes. On each lane cells and controls from
all libraries were barcoded with Illumina barcodes and sequenced together.
The table contains the number of reads, and number and fraction of mapped
reads. (b) Same as in (a), but for cells grown in serum culture. (¢) For cells
and controls grown in 2i culture condition, the number of cells and control
samples is given and the average number of reads, UMIs and transcripts per

cell is indicated. (d) Same as in (c), but for cells grown in serum culture.



Supplementary Table 2 (online)

GO terms enriched among genes with increased expression variability
in serum versus 2i culture condition. A full list of GO terms enriched
among genes with increased gene expression variability in serum versus 2i
condition can be found in Supplementary Table 2 online. Enriched biological
processes and enriched molecular functions are given as separate lists. Only
significantly enriched GO-terms (P < 0.05) were included. The lists indicate
the GO-term ID, the hypergeometric P-value, the odds ratio, the expected
number of genes associated with each GO-term, the observed number of
genes for each GO-term, the size of the GO-term (total number of genes
associated) and a short description. For the inference of over-represented GO
terms, the set of differentially variable genes was compared to the universe of
all genes expressed in the two conditions. The GOstats package was used to

compute GO enrichment in R.

Supplementary Table 3 (online)

Probe set composition of smFISH probes used. Each column represents a
probe set for the gene specified in the column header. All probes were labeled
on the 3’ end with TMR, Alexa594 or Cy5. A full list of all probe sequences

can be found in Supplementary Table 3 online.



Supplementary Note 1
Analysis of primary sequencing data

Sequencing of our cell and control libraries on an lllumina HiSeq2500 platform
yielded ~120 million reads per lane. Of those, we could map 35%-42% and
51%-55% of the reads in our cell and control libraries, respectively, to our
transcript models comprising RefSeq gene models and ERCC spike-in
sequences (Supplementary Table 1 and Methods). To investigate whether the
additional reads derived from introns, we mapped to pre-mRNA, which only
led to a minor increase of 5% mapped reads for cells and controls. To test
whether the remaining reads derived from primer sequence due to self- or
cross-hybridization, we performed an 8mer enrichment analysis since direct
mapping of the entire reads to primer sequences did not yield substantial
mappings. We measured a strong overlap of 8mers enriched in primer
sequences and reads that did not map to our gene models (Supplementary
Fig. 1a, b). Out of the top 100 most highly enriched 8mers in primer
sequences, at least one is contained in 3,605 out of 10,000 non-mapped
reads, but only in 489 out of 10,000 mapped reads. These data suggest that a
major fraction of non-mapped reads derive from primer sequences. For
mapped and non-mapped reads, the sequencing quality was high in cells and
controls. In all cases > 75% of all reads have and average Phred score of 30
or higher corresponding to 99.9% basecall accuracy (Supplementary Fig. 1c,
d). We note that we could also map 29% of all reads for a recently published
PCR based single cell sequencing method® and that our derived transcript

counts correspond well to the published count data.



Supplementary Note 2

Three models for technical noise in single cell sequencing data

In the first model (model 1) we eliminated most of the tube-to-tube variability by
normalizing counts in each sample to the cross-sample median (Fig. 2a).
Subsequently, we fitted negative binomials to the normalized distributions
(Supplementary Fig. 5a). A negative binomial is controlled by two parameters, the
mean and the dispersion parameter, and we observed a piecewise linear
dependence of the dispersion parameter on the mean (Supplementary Fig. 5b).
This dependence defines the technical noise distribution for all expression levels.
Mean and variance obtained by model | were in excellent agreement with the
corresponding quantities directly calculated from transcript counts (Supplementary
Fig. 5¢c, d).

For model Il and Il global tube-to-tube variability of sequencing efficiency
was derived from the statistics of the sequenced spike-ins. To calculate B, we
inferred a T'-distribution for the fraction of transcripts of a given gene available for
sequencing. Molecules are randomly sampled from this pool. The number of
sequenced transcripts thus corresponds to a Poisson distribution with a I'-distributed
rate, which equals a negative binomial and therefore can be fitted to the observed
distribution.

In model Il, B,was determined for each sample from a regression of the
number of sequenced spike-in transcripts on the number of spike-in molecules added
to each sample (Fig. 2b and Supplementary Fig. 6a). The statistics of p, were fitted
by a I'-distribution (Supplementary Fig. 6b) and, after superimposing Poissonian
sampling noise, parameters for the negative binomial that describes technical noise
within model Il could be derived (Supplementary Fig. 6c¢). The first two moments of
this distribution were in very good agreement with moments directly computed from
transcript counts (Supplementary Fig. 6d, e).

In model lll, the tube-to-tube variability was conditioned on the expression
level (Fig. 2b). For each spike-in species, By was computed in every sample and a
I'-distribution was fitted to the distribution of By across all samples (Supplementary
Fig. 7a, b). The dependence of the I'-distribution parameters on mean expression
could be explained by a simple linear model (Supplementary Fig. 7c, d). Using
these dependencies, we inferred parameters of the negative binomial that describe

the technical noise. The first two moments of this distribution corresponded well to



the count derived moments (Supplementary Fig. 7e, f). A detailed description of all
three models is given in Online Methods. Importantly, all three models do not require
pool-and-split controls. Measuring spike-in RNA of known concentration across the

entire dynamic range is sufficient to fit all models.



Supplementary Note 3
Comparison to a PCR based single cell sequencing method

We tested the performance of our approach on data generated by a different
sequencing technique, based on PCR amplification of starting material. We
applied model Il to recently published single cell sequencing data for R1
mESCs generated by this method with integrated UMIs of length five®.
Overall, the average number of transcripts was very similar to our J1 cells in
2i condition (Supplementary Fig. 15a), and correlation of average expression
was high (R2 = 0.82) (Supplementary Fig. 15b). This was surprising, since
Islam et al. reported an efficiency of 48%. Even at high expression we did not
see a saturation effect in the comparison of transcript numbers, suggesting
that the UMI of length 4 was sufficient. After extending the annotated spike-in
sequences with 5’ leader sequence that is likely derived from in vitro
transcription of these sequences and was identified from sequencing reads
(personal communication), we could reproduce the published spike-in
expression which was six-fold higher than for our J1 cells sequenced in 2i
condition (Supplementary Fig. 15c¢). This could either mean that the mRNA
content of J1 and R1 cells is six-fold different, or that the spike-in RNA is less
degraded in comparison to cellular RNA for the published data. Regardless of
these differences, we found that our model reproduces the technical noise in
these data very well, suggesting that the dominating sources were again
sampling noise and global tube-to-tube variability, although the latter was
strongly reduced compared to our data (Supplementary Fig. 15d). This was

not surprising, since amplification was carried out on a microfluidic platform.



Supplementary Note 4

Exploring the origin of differential gene expression noise in 2i versus

serum

To investigate the origin of differential variability in 2i condition versus serum culture
condirton we first compared mean expression in both conditions and found that
genes with increased variability were on average also more highly expressed in
serum (Supplementary Fig. 14d, e). We could confirm the observed expression
differences between the two conditions in recently published bulk RNA-seq data for a
different ES cell line* (Supplementary Fig. 14f, g). Intuitively, high expression
should not affect the Fano factor and even lead to lower variability quantified by the
CV. However, this is only true for continuous transcription at a fixed rate, but not for
bursting transcription. We therefore mapped our inferred parameters on a two state
model for bursting transcription® and computed quantities that scale with burst size
and frequency (Online Methods). The change in these quantities when switching
from serum to 2i condition indicates that increased variability in serum culture is a
consequence of lower burst frequency, but larger burst size (Supplementary Fig.
14h).

We finally explored the function of the more variable genes and, using Gene
Ontology (GO) enrichment analysis. We compared GO terms of the more variable
genes to a background of genes with similar expression (more than five transcripts)
and discovered an over-representation of diverse functional categories related to
RNA processing and protein production (Supplementary Table 2). For instance,
translation initiation factors were more than threefold enriched (hypergeometric test P
< 2 x 10 and structural constituents of the ribosome were more than twofold
enriched among variable genes (hypergeometric test P < 3 x 107%). Expression of
these genes was at the same time 1.6-fold higher in serum condition. This
observation provides evidence that anabolic activity is not only increased, but also
more variably when culturing mESCs in serum versus 2i medium. Notably, higher
expression of genes associated with anabolic activity in serum is consistent with a
previous finding that anabolic activity is enhanced by Gsk3, which is inhibited in 2i
medium®.

Taken together, we discovered a global increase of gene expression noise

due to less frequent, but larger expression bursts when culturing mESCs in serum



versus 2i medium, and identified enrichment of genes involved in mRNA processing

and protein synthesis among the more variable genes.
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