Fuzzy multiple attribute decision making methods

SJ Chen, CL Hwang - Fuzzy multiple attribute decision making: Methods …, 1992 - Springer
SJ Chen, CL Hwang
Fuzzy multiple attribute decision making: Methods and applications, 1992Springer
A MADM problem is given as: D=\A _ 2\⋮\A _ m\\left=(w _ 1, w _ 2, ..., w _ n) where A i, i=
1,..., m, are possible courses of action (candidates, alternatives); X j, j= 1,..., n, are attributes
with which alternative performances are measured; x ij is the performance score (or rating)
of alternative A i with respect to attribute X j; wj, j= 1,..., n are the relative importance of
attributes.
Abstract
A MADM problem is given as: $$\text{D=}\begin{matrix} {{\text{A}}_{1}}\\ {{\text{A}}_{2}}\\ \vdots\\ {{\text{A}}_{\text{m}}}\\ \end{matrix}\text{ }\left[\begin{matrix} {{\text{X}}_{1}}\text{ }{{\text{X}}_{2}}\text{ }\cdots \text{ }{{\text{X}}_{\text{n}}}\\ {{\text{X}}_{11}}\text{ }{{\text{X}}_{12}}\text{ }\cdots \text{ }{{\text{X}}_{1\text{n}}}\\ {{\text{X}}_{21}}\text{ }{{\text{X}}_{22}}\text{ }\cdots \text{ }{{\text{X}}_{\text{2n}}}\\ \vdots \text{ }\\ {{\text{X}}_{\text{m1}}}\text{ }{{\text{X}}_{\text{m2}}}\text{ }\cdots \text{ }{{\text{X}}_{\text{mn}}}\\ \end{matrix}\right]$$ $${\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{w}} = ({{w}_{1}},{{w}_{2}}, \ldots ,{{w}_{n}})$$ where Ai, i = 1, ..., m, are possible courses of action (candidates, alternatives); Xj, j = 1,...,n, are attributes with which alternative performances are measured; xij is the performance score (or rating) of alternative Ai with respect to attribute Xj; wj, j = 1,...,n are the relative importance of attributes.
Springer