Towards context-aware face recognition

M Davis, M Smith, J Canny, N Good, S King… - Proceedings of the 13th …, 2005 - dl.acm.org
Proceedings of the 13th annual ACM international conference on Multimedia, 2005dl.acm.org
In this paper, we focus on the use of context-aware, collaborative filtering, machine-learning
techniques that leverage automatically sensed and inferred contextual metadata together
with computer vision analysis of image content to make accurate predictions about the
human subjects depicted in cameraphone photos. We apply Sparse-Factor Analysis (SFA)
to both the contextual metadata gathered in the MMM2 system and the results of PCA
(Principal Components Analysis) of the photo content to achieve a 60% face recognition …
In this paper, we focus on the use of context-aware, collaborative filtering, machine-learning techniques that leverage automatically sensed and inferred contextual metadata together with computer vision analysis of image content to make accurate predictions about the human subjects depicted in cameraphone photos. We apply Sparse-Factor Analysis (SFA) to both the contextual metadata gathered in the MMM2 system and the results of PCA (Principal Components Analysis) of the photo content to achieve a 60% face recognition accuracy of people depicted in our cameraphone photos, which is 40% better than media analysis alone. In short, we use context-aware media analysis to solve the face recognition problem for cameraphone photos.
ACM Digital Library