Probabilistic group-level motion analysis and scenario recognition

MC Chang, N Krahnstoever… - … Conference on Computer …, 2011 - ieeexplore.ieee.org
MC Chang, N Krahnstoever, W Ge
2011 International Conference on Computer Vision, 2011ieeexplore.ieee.org
This paper addresses the challenge of recognizing behavior of groups of individuals in
unconstraint surveillance environments. As opposed to approaches that rely on
agglomerative or decisive hierarchical clustering techniques, we propose to recognize
group interactions without making hard decisions about the underlying group structure.
Instead we use a probabilistic grouping strategy evaluated from the pairwise spatial-
temporal tracking information. A path-based grouping scheme determines a soft …
This paper addresses the challenge of recognizing behavior of groups of individuals in unconstraint surveillance environments. As opposed to approaches that rely on agglomerative or decisive hierarchical clustering techniques, we propose to recognize group interactions without making hard decisions about the underlying group structure. Instead we use a probabilistic grouping strategy evaluated from the pairwise spatial-temporal tracking information. A path-based grouping scheme determines a soft segmentation of groups and produces a weighted connection graph where its edges express the probability of individuals belonging to a group. Without further segmenting this graph, we show how a large number of low- and high-level behavior recognition tasks can be performed. Our work builds on a mature multi-camera multi-target person tracking system that operates in real-time. We derive probabilistic models to analyze individual track motion as well as group interactions. We show that the soft grouping can combine with motion analysis elegantly to robustly detect and predict group-level activities. Experimental results demonstrate the efficacy of our approach.
ieeexplore.ieee.org
Showing the best result for this search. See all results