Deltar: Depth estimation from a light-weight tof sensor and rgb image

Y Li, X Liu, W Dong, H Zhou, H Bao, G Zhang… - European conference on …, 2022 - Springer
Y Li, X Liu, W Dong, H Zhou, H Bao, G Zhang, Y Zhang, Z Cui
European conference on computer vision, 2022Springer
Light-weight time-of-flight (ToF) depth sensors are small, cheap, low-energy and have been
massively deployed on mobile devices for the purposes like autofocus, obstacle detection,
etc. However, due to their specific measurements (depth distribution in a region instead of
the depth value at a certain pixel) and extremely low resolution, they are insufficient for
applications requiring high-fidelity depth such as 3D reconstruction. In this paper, we
propose DELTAR, a novel method to empower light-weight ToF sensors with the capability …
Abstract
Light-weight time-of-flight (ToF) depth sensors are small, cheap, low-energy and have been massively deployed on mobile devices for the purposes like autofocus, obstacle detection, etc. However, due to their specific measurements (depth distribution in a region instead of the depth value at a certain pixel) and extremely low resolution, they are insufficient for applications requiring high-fidelity depth such as 3D reconstruction. In this paper, we propose DELTAR, a novel method to empower light-weight ToF sensors with the capability of measuring high resolution and accurate depth by cooperating with a color image. As the core of DELTAR, a feature extractor customized for depth distribution and an attention-based neural architecture is proposed to fuse the information from the color and ToF domain efficiently. To evaluate our system in real-world scenarios, we design a data collection device and propose a new approach to calibrate the RGB camera and ToF sensor. Experiments show that our method produces more accurate depth than existing frameworks designed for depth completion and depth super-resolution and achieves on par performance with a commodity-level RGB-D sensor. Code and data are available on the project webpage.
Springer
Showing the best result for this search. See all results