Authors
Dingding Wang, Tao Li, Shenghuo Zhu, Chris Ding
Publication date
2008/7/20
Book
Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval
Pages
307-314
Description
Multi-document summarization aims to create a compressed summary while retaining the main characteristics of the original set of documents. Many approaches use statistics and machine learning techniques to extract sentences from documents. In this paper, we propose a new multi-document summarization framework based on sentence-level semantic analysis and symmetric non-negative matrix factorization. We first calculate sentence-sentence similarities using semantic analysis and construct the similarity matrix. Then symmetric matrix factorization, which has been shown to be equivalent to normalized spectral clustering, is used to group sentences into clusters. Finally, the most informative sentences are selected from each group to form the summary. Experimental results on DUC2005 and DUC2006 data sets demonstrate the improvement of our proposed framework over the implemented existing …
Total citations
2008200920102011201220132014201520162017201820192020202120222023202419172423244754374335191915975
Scholar articles