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Abstract—Continuous Integration (CI, i.e., the automatic build
and test cycle applied to the change sets that development
teams produce) has become a standard practice of modern
software development. CI enables rapid feedback on code changes
and fosters seamless integration in collaborative environments.
While CI adoption enhances productivity and software quality,
compute resources that enable CI are a shared commodity
that organizations need to manage. As projects evolve, the
complexity of CI pipelines introduces potential inefficiencies, such
as prolonged CI build durations and frequent build restarts.
Much of these inefficiencies are explicit, where developers are
consciously aware of the overuse of CI resources, i.e., build
time. However, there are also tacitly wasted CI resources that
accumulate unnoticed. For example, inefficiencies in the CI
environment, CI configurations, or dependencies can gradually
extend CI build times and increase resource consumption. In this
thesis, we focus on tacitly accrued CI waste, hypothesizing that
neglecting such inefficiencies depletes CI resources substantially.
In particular, we aim to quantify and characterize this waste by
examining inefficiencies in the CI environment, CI configurations,
and dependency configurations, and provide solutions to mitigate
such waste.

Index Terms—continuous integration, timeouts, ci smells, un-
used dependencies.

I. INTRODUCTION

Continuous Integration (CI) is a software development
practice where developers frequently merge their change sets
into a shared codebase through a Version Control System
(VCS), triggering automated builds and tests to ensure that the
codebase remains stable [7], [18]. CI builds are automatically
triggered by events such as code commits (i.e., submission
of change sets to VCS), and they can also be initiated
manually by developers. By using CI, project maintainers aim
to mitigate the challenges of late-stage code integration, known
as “integration hell,” by enabling continuous feedback and
supporting agile and DevOps methodologies [7], [42].

Fig. 1 illustrates the CI workflow. The workflow starts when
a developer (or a bot) submits a change set to the VCS, trigger-
ing a CI build in the CI environment. This environment can
either be an on-premise setup specific to a project or a cloud-
based environment provided by a CI service provider (i.e.,
third-party companies). It includes the necessary infrastructure
to execute a CI build, such as hardware, software, and network
resources. For instance, hardware resources in a CI environ-
ment can include servers for executing tasks and storage for
archiving build artifacts like binaries and logs. The settings
and instructions for executing a CI build (e.g., which branches

Fig. 1. An overview of a typical scenario where a CI build is triggered and
the feedback is sent to the developer.

or events trigger builds, environment variables, and secure
management of secrets) are specified in CI configuration
files. For CircleCI (a popular CI provider), CI configurations
have to be specified in the configuration.yml file within
the .circleci/ directory. Similarly, the CI configurations
for GitHub Actions—another CI provider—are specified in
.yml files in the .github/workflows/ directory, with
each file containing multiple steps to automate a CI build. A
CI build usually includes tasks such as cloning the codebase,
downloading dependencies that are listed in dependency con-
figuration files, compiling the code, and running automated
tests. A CI build may also include steps such as linting to
enforce coding standards. When the tasks of a CI build are
successfully completed a, the outcome of CI build is marked
as Passed; otherwise, it is marked as Failed.

Due to the immediate feedback provided by CI on the
change sets submitted to the VCS, CI is known to offer several
benefits for its consumers, i.e., the maintainers and developers
of projects that use CI [8], [17], [33], [42]. For example, CI
is known to improve developer productivity [32] and software
quality [17], [33].

However, as projects evolve and their CI pipelines grow
in complexity and scale, CI pipelines can become susceptible
to inefficiencies that negatively impact the effectiveness of CI
pipelines. For example, flakiness is an inefficiency in CI, where
CI builds triggered on the same change set intermittently pass
or fail without a consistent outcome [15], [30]. To address the
uncertainty caused by flaky builds, developers often restart CI
builds after a failure in an attempt to determine whether the
failure is caused by flakiness [6], [24]. While such restarts are
intended to ensure the consistency of the build outcome, if the
flakiness is not treated, restarted builds contribute to additional
waste of CI build time and resources [24].
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Fig. 2. An overview of the proposed thesis.

Much of the inefficiencies in CI pipelines that have previ-
ously been explored are explicit, where developers are aware
of the waste of CI build time (e.g., restarted CI builds). How-
ever, there is also waste that tacitly (i.e., silently) accrued in
CI pipelines due to inefficiencies that arise without developers’
direct involvement. This thesis aims to understand the causes
and implications of tacitly accrued waste in CI pipelines.
Thus, we will use historical CI data to evaluate the following
research hypothesis.

Research Hypothesis

Neglecting tacitly accrued CI waste leads to a sub-
stantial depletion of CI resources. By quantifying and
characterizing forms of such CI waste, strategies can
be developed to reduce CI waste and enhance the
overall effectiveness of CI pipelines.

To evaluate this hypothesis, we explore tacitly accrued
CI waste by examining inefficiencies in CI environments
(SectionII), CI configurations (SectionIII), and dependency
configurations (SectionIV). By systematically exploring these
aspects, we aim to uncover the specific factors contributing
to inefficiencies in Open Source Software (OSS), and provide
insights for mitigating waste in CI. Fig. 2 shows an overview
of the proposed thesis. Lastly, we hope to leverage the insights
collected by the end of this exploration to propose a multi-
faceted approach, CI-SCIMITAR (SectionV), to assist devel-
opers in cutting down tacitly accrued waste in CI pipelines.

II. CI WASTE DUE TO INEFFICIENCIES IN CI
ENVIRONMENTS

CI builds may run into unforeseen issues in a CI envi-
ronment, such as network problems1 and prolonged waiting
on external services. Such inefficiencies increase resource

1https://github.com/oblador/loki/issues/94

consumption. To mitigate this, CI providers often impose time
limits on CI builds to prevent erroneous builds from con-
suming excessive resources in the CI environment. However,
when a CI build exceeds this time limit, it is automatically
terminated,2 often after consuming a substantial amount of
CI resources. While these limits are meant to protect the CI
environment from abuse, they can result in the maximum
allowable resources being consumed without providing any
feedback on whether the build would have passed or failed
[10], [13]. In this section, we explore the prevalence and
characteristics of builds that lead to CI timeouts. This
analysis would provide insight into potential improvements
for CI pipelines to mitigate CI timeouts. Below, we provide a
preview of our approach and results. An extensive version of
this section appears in our published work [36].

A. Prevalence of CI timeouts

Approach. We begin with a dataset curated by Gallaba
et al. [10], which contains CircleCI builds spanning 7,795
GitHub projects. We estimate the prevalence of CI timeouts
by calculating their frequencies and comparing the durations
of CI timeouts to signal-generating builds (i.e., CI builds with
a passed or failed outcome).

Results. Out of 7,795 projects, 936 (12%) have at least one
timeout build. The median number of timeout builds among
these projects is four. However, 10% of the projects have 44 or
more timeouts each, while an extreme 4% have 100 or more
timeouts each, indicating a highly skewed distribution [27].
In addition, we find that the median timeout duration is 19.7
minutes, nearly five times longer than the median duration of
signal-generating builds. This suggests that CI timeout builds
are a substantial issue for GitHub projects.

B. Characteristics of CI timeouts

Approach. To investigate the factors that characterize the
outcome of CI builds, we extract five families of features (such
as build history, change set size, and timeout tendency) from
105,663 CI builds that span 24 most timeout-prone projects
(accountable for 54% of all timeout builds) in Gallaba et
al.’s dataset [10]. Then, we fit a statistical (logistic) regression
model to our dataset, and analyze it. To assess the discrimi-
natory power, we use the Area Under the Receiver Operating
characteristic Curve (AUROC). We measure the explanatory
power of each family of features by using Wald χ2 tests [28].

Results. Our model has an AUROC of 0.939, which vastly
surpasses that of a random predictor (AUROC = 0.5). Our
Wald χ2 tests reveal that the build history and timeout ten-
dency features are strong indicators of CI timeouts, with the
timeout status of the most recent build accounting for the
largest proportion of the explanatory power. A longitudinal
analysis (i.e., a study conducted over a period of time) shows
that 64.03% of CI timeouts occur consecutively in projects,
with a median interval of 24 hours before a passing or failing
build. These findings suggest that build history and timeout
tendencies can help anticipate CI timeouts.

2https://support.circleci.com/hc/en-us/articles/360007188574
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III. CI WASTE DUE TO INEFFICIENCIES IN CI
CONFIGURATIONS

CI configurations (i.e., the setup, build scripts, and set-
tings)3 are prone to anti-patterns, known as CI smells [3],
[11], [34], [40]. CI smells can degrade the efficiency of CI
builds, especially as projects scale. For example, configuring
CI to use slow machines, disabling caching of large files
and dependencies, and excessive logging are common CI
smells. However, optimal CI configurations can vary across
projects, as each has unique requirements and constraints. For
example, while caching files can reduce CI build times, it may
not be cost-effective for projects with tight budgets due to
potential storage overages that incur additional charges by CI
providers. In this section, we propose to measure and analyze
the impact of CI smells on CI build duration and cost.
Such a quantification would provide actionable insights to help
developers optimize CI setups, enhancing resource utilization
without compromising project budgets or scalability. Below,
we discuss the proposed approaches and expected results.

A. Impact of CI smells on CI build durations

Proposed Approach. We aim to compare CI build durations
before and after fixing CI smells in a set of open-source
projects, and quantify the CI time improvement associated
with each CI smell. Additionally, we hope to conduct a statis-
tical regression analysis to assess how project characteristics,
such as the average size of change sets and project activity
levels, contribute to the CI build time savings achieved by
fixing each smell.

Expected Results. We anticipate that addressing certain
CI smells, like implementing optimized caching or reduc-
ing excessive logging, will significantly shorten build times.
Through our regression analysis, we aim to identify project
characteristics that drive greater CI time reductions after fixing
these smells.

B. Impact of CI smells on the cost of CI

Proposed Approach. To examine the impact of CI smells
on costs, we will estimate the build expenses before and after
fixing CI smells. This analysis will consider variables such as
the cost of using faster machines and caching. Then, we plan
to analyze how CI costs can vary before and after fixing each
CI smell that is considered in our study.

Expected Results. We expect that addressing certain CI
smells may lead to reduced CI costs, while others may result
in increased costs. For instance, using faster machines or im-
plementing caching could initially increase costs—but would
it ultimately reduce overall build expenses by decreasing build
duration and frequency?

We hope that the findings of this proposed study on the
impact of CI smells on build time and cost may provide
insights into both universally applicable and project-specific
CI configurations aimed at reducing build time and costs.
We believe such recommendations would guide developers

3https://circleci.com/docs/configuration-reference/

and project maintainers in making data-driven, cost-effective
adjustments to their CI configurations based on project re-
quirements.

IV. CI WASTE DUE TO INEFFICIENCIES IN DEPENDENCY
CONFIGURATIONS

Software projects frequently rely on numerous external
dependencies listed in their dependency configurations, many
of which may not be actively used in the project’s codebase
[21]. Although these unused dependencies are not essential
for building and running the project, updating their versions
in dependency configurations can still trigger CI builds. Such
builds are wasteful because they do not impact the actual
functioning of the software. In this section, we aim to quantify
the prevalence and characterize the sources of CI waste due to
unused-dependency updates to gain insights into mitigating
such waste. Below, we provide a preview of our approach and
results. An extensive description of the results of this study is
available in our published work [37].

A. Prevalence of unused-dependency updates
Approach. We begin with a dataset of 13,991 JavaScript

projects that use a dependency manager (i.e., npm in our
case) and adopt CI. From these projects, we extract 121,453
commits that update dependencies in the package.json
file (i.e., the dependency configuration file for npm). Next,
by using the DEPCHECK tool,4 we identify 49,731 of these as
updating unused dependencies. Then, we retrieve CI data for
these commits to analyze the impact of unused dependencies
on build time. We use this dataset to quantify CI waste from
the perspectives of CI providers, as well as CI consumers.

Results. We find that from the perspective of the CI
provider, 55.88% (3,427 build hours) of the overall CI build
time that is consumed by updates to npm dependency speci-
fications in the studied projects is attributed to unused depen-
dencies. At the project level, a median of 56.09% of CI build
time is spent on updates to unused dependencies.

B. Sources of unused-dependency updates
Approach. We use our dataset of dependency updates to

quantify CI waste by identifying who is generating unused
dependency updates (i.e., bots or developers) and which types
of dependencies tend to be affected (i.e., development or
runtime).

Results. Our results show that a large proportion (92.93%)
of the CI build time that is spent on unused dependencies
is wasted due to bot-generated updates, with Dependabot5

accounting for 74.52% of that wasted CI build time. With
respect to the type of dependencies, the majority of the wasted
CI build time (92.63%) occurs due to unused development
dependencies, which are at lower risk of introducing field
failures due to erroneous removal [5]. These findings suggest
that CI waste can be reduced by targeting bot-generated
updates and skipping wasteful builds, as the majority are
triggered by unused, non-production dependencies.

4https://github.com/depcheck/depcheck
5https://github.com/dependabot
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V. CI-SCIMITAR

In this section, we propose our tool, CI-SCIMITAR, which
we plan to develop based on the insights gathered from our
studies discussed in sections II, III, and IV. The aim of CI-
SCIMITAR is to offer a comprehensive solution to enhance
the efficiency and effectiveness of CI pipelines by minimizing
waste at various stages of CI.

CI-SCIMITAR will be composed of three integral compo-
nents. First, we introduce TIMEOUT-SCIMITAR, which will
leverage machine learning to set suitable timeout limits for
builds, and predict the likelihood of CI builds resulting in
timeouts. Second, we introduce SMELL-SCIMITAR, where we
hope to integrate the findings from our analysis of CI smells
to detect smells that contribute to CI waste, and recommend
optimized CI configurations, taking both CI time saved and
CI cost spent into consideration. Lastly, we introduce DEP-
SCIMITAR, a method designed to bypass unnecessary CI
builds triggered by updates to unused dependencies made by
developers as well as bots. We have successfully implemented
this DEP-SCIMITAR component, and it is available as an npm
package, and our published work [37] includes an evaluation.

Upon the full implementation of CI-SCIMITAR, we will
select a significant sample of projects and re-execute the CI
builds of their most stable branch with and without the tool.
We will assess CI-SCIMITAR’s effectiveness by measuring the
build time saved. Besides, we will evaluate the additional build
time savings achieved when CI-SCIMITAR is used alongside
existing build acceleration tools [9].

VI. RELATED WORK

Long-duration CI builds are a common issue in maturing
projects, leading to inefficiencies in the development process
[9], [10], [12]. Ghaleb et al. [12] analyzed 104,442 CI builds
from 67 open-source projects and found that builds that are
re-executed multiple times are most prone to long durations.
They also identified CI timeouts as a common consequence
of lengthy builds, which is supported by other studies as well
[10], [13]. CI timeouts waste resources and fail to provide
useful feedback, which is explored in detail in this thesis.

CI smells, i.e., anti-patterns in CI configurations and pro-
cesses are explored in other studies [11], [31], [34], [35],
[39]–[41]. CI smells, if left unaddressed, can lead to degraded
performance in CI pipelines. For example, Zhang et al. [41]
cataloged five performance-related CI configuration smells in
Travis CI, such as not using dependency caching and retrying
failed steps within CI builds. While many of the existing
studies catalog CI smells and propose fixes, quantifying the
practical impact of these smells on CI waste would offer
crucial insights into areas for improvement, which we hope
to explore in this thesis.

Smells in dependency configurations may also waste CI
time. While not caching dependencies, as suggested by Zhang
et al. [41], is a smell in CI configurations, having unused
dependencies listed in a project’s dependency configurations
is a smell in dependencies [21]. While caching dependencies
can reduce the CI build time spent on installing unused

dependencies [41], maintaining up-to-date versions of those
dependencies may still trigger CI builds, wasting CI resources.
In this thesis, we perform a detailed analysis of how unused
dependencies impact CI processes.

Several approaches were proposed to accelerate CI builds.
For example, incremental builds can accelerate the artifact-
building phase by only rebuilding what is affected by code
changes, such as Google’s Bazel. However, they rely on man-
ually specified build dependency graphs, which can drift out of
sync or be incorrectly specified [9], [23], [25], [26]. Skipping
CI builds also reduces CI build time [1], [2], [9], [20]. For
example, Abdalkareem et al. [2] examined 1,813 commits
where developers requested for CI builds to be skipped. This
analysis identified reasons for skipping CI builds, such as
changes only affecting non-compilable files like documenta-
tion. For these reasons, a rule-based method was proposed
to automatically identify commits eligible for CI skipping.
Other studies suggested predicting CI build outcomes to allow
skipping likely-to-pass builds and offering early failure feed-
back before completion of a build [4], [19], [29], [38]. For
example, Chen et al. [4] proposed BUILDFAST–an approach
to predict CI build outcomes by using change-set and history-
aware features, such as the status of the previous build and
the total number of previously failed builds. Their predictor
outperformed the state-of-the-art approaches by 47.5% in the
F1 score for failed builds. Additionally, test-skipping methods
[14], [16], [22] target specific tests without skipping entire
builds, as shown by Gligoric et al. [14], who tracked test-file
dependencies to skip tests unaffected by changes.

VII. CONCLUSION

In this thesis, we propose to investigate inefficiencies in CI
that tacitly accrue waste, such as CI timeouts, CI configuration
issues, and unused dependencies. The core hypothesis is that
ignoring these wastes has a substantial drain on CI resources.
To validate this, we analyze historical CI data to quantify these
inefficiencies and propose strategies to mitigate them. Then,
we propose CI-SCIMITAR, a tool designed to reduce CI waste
and improve build efficiency, which will be evaluated for its
impact on build times and cost.

This work advances the understanding of CI inefficiencies,
offering actionable solutions for developers. Our findings on
CI timeouts and unused dependencies are presented in sections
II [36] and IV [37], respectively, while Section III proposes
a study to measure the impact of CI smells on CI pipelines.
Details of CI-SCIMITAR development are in Section V. I hope
to finish the remainder of this research and complete my thesis
by the end of August 2025. The timeline is outlined below.

Acknowledgment. I thank my supervisor, Prof. Shane
McIntosh, for his immense guidance throughout this journey.

Fig. 3. Timeline for the completion of our study.
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[32] D. Ståhl and J. Bosch, “Experienced benefits of continuous integration
in industry software product development: A case study,” in Proceedings
of the 12th IASTED International Conference on Software Engineering,
2013.

[33] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality
and productivity outcomes relating to continuous integration in github,”
in Proceedings of the 10th joint meeting on foundations of software
engineering, 2015.

[34] C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta, “Automated
reporting of anti-patterns and decay in continuous integration,” in 41st
International Conference on Software Engineering, 2019.

[35] C. Vassallo, S. Proksch, A. Jancso, H. C. Gall, and M. Di Penta,
“Configuration smells in continuous delivery pipelines: a linter and a six-
month study on gitlab,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020.

[36] N. Weeraddana, M. Alfadel, and S. McIntosh, “Characterizing timeout
builds in continuous integration,” IEEE Transactions on Software Engi-
neering, 2024.

[37] N. R. Weeraddana, M. Alfadel, and S. McIntosh, “Dependency-induced
waste in continuous integration: An empirical study of unused depen-
dencies in the npm ecosystem,” Proceedings of the ACM on Software
Engineering, vol. 1, no. FSE, 2024.

[38] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,” in
31st international conference on software engineering, 2009.

[39] F. Zampetti, S. Geremia, G. Bavota, and M. Di Penta, “Ci/cd pipelines
evolution and restructuring: A qualitative and quantitative study,” in
International Conference on Software Maintenance and Evolution, 2021.

[40] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora, H. Gall, and
M. Di Penta, “An empirical characterization of bad practices in con-
tinuous integration,” Empirical Software Engineering, vol. 25, 2020.

[41] C. Zhang, B. Chen, J. Hu, X. Peng, and W. Zhao, “Buildsonic: Detecting
and repairing performance-related configuration smells for continuous
integration builds,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022.

[42] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The
impact of continuous integration on other software development prac-
tices: a large-scale empirical study,” in 32nd International Conference
on Automated Software Engineering, 2017.

5


	Introduction
	CI Waste Due to Inefficiencies in CI Environments
	Prevalence of CI timeouts
	Characteristics of CI timeouts

	CI Waste Due to Inefficiencies in CI Configurations
	Impact of CI smells on CI build durations
	Impact of CI smells on the cost of CI

	CI Waste Due to Inefficiencies in Dependency Configurations
	Prevalence of unused-dependency updates
	Sources of unused-dependency updates

	CI-sCImitar
	Related Work
	Conclusion
	References

