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Abstract

Ramsey- and Tur�an-type problems were always strongly related to each other. Motivated by
an observation of Paul Erdős, it was Tur�an who started the systematic investigation of the
applications of extremal graph theory in geometry and analysis. This led the second author
to some results and problems which, in turn, led to the birth of Ramsey–Tur�an-type theorems.
Today this is a wide �eld of research with many interesting results and many unsolved problems.
Below we give a short survey of the most important parts of this �eld: starting with a historical
sketch we continue by describing the

• Ramsey–Tur�an-type problems and results.
• Related problems in Ramsey theory.
• Some applications.
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Notation: For a set Q, |Q| will denote its cardinality. We shall primarily consider
graphs without loops and multiple edges. However, (as tools) we shall also use colored
graphs with weighted edges and vertices. Given a graph G, e(G) will denote the number
of its edges, v(G) the number of its vertices, �(G) its chromatic number, �(G) the
maximum size of an independent set in it. Given a graph, the (�rst) subscript will
denote the number of vertices: Gn; Sn; : : : will always denote graphs on n vertices. 3

R(k1; : : : ; kr) will denote the usual lower Ramsey number, that is the maximum t such
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that there exists an edge-coloring of Kt in r colors where Kt contains no Kki in the ith
color (sometimes denoted by �i) for 16i6r. For given graphs L1; : : : ; Lr , R(L1; : : : ; Lr)
will denote the corresponding Ramsey number, that is, the maximum t for which Kt
has an edge-coloring in r colors where Kt contains no (not necessarily induced) Li in
the ith color for 16i6r. If we use two colors �1 and �2, we shall call the �rst color
RED, the second one BLUE. Occasionally, when we need to indicate the number of
colors used, like in R(a; : : : ; a), — to avoid ambiguity — we shall use the more precise
notation R[r](a; : : : ; a). K

(r)
k denotes the complete r-uniform hypergraph on k vertices.

Given a graph G and a set U of vertices of G, G[U ] will denote the subgraph of
G induced (spanned) by U . The number of edges in a subgraph spanned by a set U
of vertices of G will be denoted by e(U ). We shall say that X is completely joined
to Y if every vertex of X is joined to every vertex of Y .
Given two points x, y in the Euclidean space Eh, (or in any given metric space)

�(x; y) will denote their distance.

1. Introduction

1.1. Ramsey theorem, Tur�an theorem and generalizations

Ramsey theorem [115] and Tur�an extremal graph theorem [147,148,154], are both
among the basic theorems of graph theory. Both served as starting points of whole
branches in graph theory and both are applied in many �elds of mathematics. 4 In the
late 1960s a whole new theory emerged, connecting these �elds.
In 1930 Ramsey proved the famous

Theorem 1 (Ramsey theorem for 2 colors, complete graphs [115]). Given a positive
integer k there exists a threshold integer R = R(k) such that if n¿R(k) and
the edges of Kn are colored in two colors arbitrarily; then it contains a mono-
chromatic Kk .

Motivated by this theorem, Tur�an posed the following question in 1940 [147]:

What is the maximum number of edges a graph Gn can have without containing
a complete graph Kk?

Obviously, if we partition n vertices into k − 1 classes as equally as possible and
join two vertices i� they belong to di�erent classes, then we obtain a k − 1-chromatic
graph, not containing Kk . This graph will be denoted by Tn;k−1, and called the Tur�an
graph on n vertices and k − 1 classes.
P. Tur�an proved:

4 On Ramsey theory see the book of Graham et al. [85], and on extremal graph theory see the book of
Bollob�as [12] or the survey of Simonovits [135].
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Theorem 2 (Tur�an theorem for complete graph [147,148]). Given n and k; (1¡k6n);
every graph Gn on n vertices not containing a Kk has at most t(n; k − 1) := e(Tn;k−1)
edges; and this maximum is attained only by Tn;k−1.

Note that this completely solves the extremal problem:
If n= ‘(k − 1) + d, 06d¡k − 1, then

t(n; k − 1) = 1
2

(
1− 1

k − 1
)
(n2 − d2) +

(
d
2

)
=
(
1− 1

k − 1
)(

n
2

)
+O(1):

Below we formulate another version of Ramsey theorem which may seem to be
more general but is equivalent to the previous one. Then we formulate a generalization
of Tur�an’s theorem. Here, writing that ‘G contains an L’ we do not necessarily assume
that L is an induced subgraph of G.

Theorem 3 (Ramsey theorem for many colors and arbitrary graphs). Let L1; : : : ; Lr be
�xed graphs. There exists a threshold integer R = R(L1; : : : ; Lr) such that if n¿
R(L1; : : : ; Lr) and the edges of Kn are colored in r colors arbitrarily; then for some
i6r it contains an Li in the ith color.

Theorem 4 (Erdős–Stone–Simonovits [64]). Let L be a family of graphs and let
ext(n;L) denote the maximum number of edges a graph Gn can have without con-
taining any subgraph L ∈ L. Put

p :=p(L) = min
L∈L

�(L)− 1:

Then

ext(n;L) =
(
1− 1

p

)(
n
2

)
+ o(n2):

As we see, in case of Tur�an type extremal problems the chromatic number determines
the answer asymptotically. (For p = 1 this gives only ext(n;L) = o(n2) and to �nd
�ner estimates is mostly a very di�cult, open problem. We shall return to this problem
in Section 2.5, more precisely, to the problem of �nding lower bounds.)
As Erdős [40] and Simonovits [132] proved, not only ext(n; L) but the extremal or

almost extremal graphs are also near (in structure) to a Tur�an graph.
As to the Ramsey functions, even in the simplest case, for R(k) (two colors, sym-

metric case) no asymptotics is known.

1.2. The Ramsey–Tur�an problem

Observe, that the extremal graph in Tur�an’s theorem has a very strict structure. It is
very regular, and the chromatic number is ‘small’, the vertex set is the disjoint union of
a few ‘large’ independent sets. Its structure is as far as possible from what we would
call randomlike. The Ramsey problems are also extremal problems but there everybody



296 M. Simonovits, V.T. S�os /Discrete Mathematics 229 (2001) 293–340

thinks that the good Ramsey structures are randomlike. One question of this �eld could
be: how does the maximum number of edges of a graph Gn not containing some �xed
subgraph L changes if we add some extra conditions which move the structure of Gn
away from the regular, simple structures towards the randomlike ones. In other words,
how ‘stable’ the extremal graph is.

Problem A: For a given m let Gn be a graph not containing Kk and having indepen-
dence number �(Gn)¡m. What is the maximum number of edges such a graph can
have?

This simple question is motivated by Ramsey and Tur�an theorems and also by some
applications discussed later, in Section 8. Most probably it was Andr�asfai who —
answering some questions of Erdős — �rst started the investigation of this problem
systematically, see Remark 63. Considering the general formulation of Ramsey’s the-
orem, it is also natural to ask the analogous Tur�an-type question.

Problem B (Tur�an-type extremal problem for colored graphs). Let L1; : : : ; Lr be �xed
graphs. What is the maximum number of edges an r-edge-colored Gn can have under
the condition that it does not contain an Li in the ith color, for any 16i6r.
The maximum will be denoted by T (n; L1; : : : ; Lr).

The more general problem — a common generalization of the above problems is:

Problem C: Let L1; : : : ; Lr be �xed graphs. Let Gn be a graph such that

(a) �(Gn)¡m and
(b) the edges of Gn are colored by r colors so that the subgraph G

(i)
n de�ned by the

edges of the ith color contains no Li for any i = 1; : : : ; r.
What is the maximum number of edges such a graph can have?

The maximum will be denoted by

RT(n;L1; : : : ; Lr; m)

or, when Li = Kki , by

RT(n; k1; : : : ; kr ; m):

Of course, for �xed m and large n — by Ramsey theorem — there are no graphs
with the above properties: the maximum is taken over the empty set. However, we
are interested mainly in the case m → ∞, m = o(n), but m=n → 0 very slowly.
We will always assume that the set of graphs is nonempty, which is equivalent with
n6R(L1; : : : ; Lr; Km). Later we shall generalize Problem C into two directions:

• to hypergraphs and
• by generalizing the notion of independence number to �p(G), see Section 7.
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1.3. Applications of Ramsey’s and Tur�an’s theorem

It is an interesting piece of history that Erdős and Szekeres rediscovered the Ramsey
Theorem to apply it in the solution of a problem of Eszter Klein (Mrs Szekeres) in
geometry. A detailed description of the ‘story’ of the Erdős–Szekeres theorem can be
found in the ‘Preface’-paper of Szekeres included in the Art of Counting [141].

Theorem 5 (Erdős–Szekeres [72]). For every k there is a threshold F(k) such that if
at least F(k) points are given in the plane; no three on a line; then there are always
k of them forming a convex k-gon.

Proof (Sketch). The basic idea of one of the standard proofs is the following:
Take n points in the plane and consider the corresponding complete 4-uniform

hypergraph K (4)n . Color its hyperedges by RED and BLUE as follows: if for four
points their convex hull is a 4-gon then the 4-tuple be RED, otherwise it is BLUE.

Claim 6. This coloring has no RED complete 4-uniform graph K (4)5 .

Since Ramsey theorem holds also for hypergraphs, by Claim 6 the RED–BLUE
colored K (4)n contains a BLUE complete k-graph K (4)k , assumed that n is su�ciently
large. The corresponding k points form a convex k-gon.

Remark 7. Erdős and Szekeres have shown that

F(k)6
(
2k − 4
k − 2

)

and they conjectured that

F(k) = 2k−2 + 1:

One can easily show that F(4) = 5; F(5) = 9 is a di�cult result of Makai and Tur�an
[107]. The general case is still unsolved. 5

Remark 8. (a) The Erdős–Szekeres paper contains another proof as well.
(b) There are alternative proofs of the corresponding fact using similar Ramsey

arguments but for triplets instead of 4-tuples.

The �rst application of Tur�an’s theorem to geometry was given by Erdős.

Theorem 9 (Erdős [34]). If {P1; : : : ; Pn} is a set of n points in the plane of diameter
(of maximum distance) 1; then at least 3( [n=3]2 ) ∼ n2=6 pairs Pi; Pj have distance
6 1√

2
.

5 Recently G. Szekeres has obtained some new results in connection with this problem: he reformulated a
more general problem so that it became much more algebraic and therefore the small cases of the original
problem can be handled even by a computer.
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The proof is based on the following simple geometrical fact:
If Qi; 16i64 are points in the plane, of maximum distance 1, then the smallest

distance among them is at most 1√
2
.

Therefore, if Gn is the graph the vertices of which are 1; : : : ; n and the edges of
which are the pairs (i; j) for which the distance %(Pi; Pj)¿ 1√

2
, then K4 * Gn. Hence

Tur�an’s theorem implies the result.

Remark 10. This result is sharp in two di�erent ways.

(a) The proportion 1
3 cannot be increased: taking the vertices A; B; C of an equilateral

triangle in R2 and replacing each vertex by ≈ n=3 di�erent vertices near to the
corresponding point we have a situation where ≈ 2

3 (
n
2 ) distances are near 1 and

all the others are very small.
(b) The distance 1√

2
cannot be decreased without decreasing the proportion: taking the

vertices of a unit square and replacing each by roughly n=4 di�erent points from
their �-neighborhood, inside the unit square, we get a set of n points where the
diameter is 1 and only 4( n=42 ) ≈ n2=8 of the distances are smaller than 1√

2
− �.

It is somewhat annoying that these two constructions are completely di�erent.

In the late 1960s Tur�an started applying the main idea of the above proof of
Theorem 9 in several di�erent situations. As Tur�an observed, both Ramsey theorem
and his theorem are in some sense generalizations of the Pigeon Hole Principle and
therefore it is not so surprising that they are applicable in so many areas of graph
theory and other branches of mathematics. 6 We shall not consider here any appli-
cations to combinatorics (which are perhaps not so surprising), but only applications
to geometry, analysis, potential theory, and probability theory. Work in the �rst two
areas was initiated by Tur�an [149], continued �rst by him in [150–152], : : : and then
continued by Erdős, Meir, T. S�os and Tur�an [54–57] and others. The application to
probability theory is due to Katona [88–91,94], Katona–Stechkin, [95], and Sidorenko
[124–130].

• One of the new ideas in Tur�an’s papers was that the constant 1=
√
2 is a so-called

‘packing’ constant of the plane and the above method works for the other packing
constants as well. Moreover, one can apply the method with many di�erent packing
constants simultaneously.

• Another important new feature was that this method works for arbitrary (let us say,
‘reasonable’) metric spaces. Therefore, there is a wide spectrum of cases where
extremal graph theory can be applied.

• The same approach can be observed in the works of Katona and then of Sidorenko:
Take a problem in probability theory, where the distribution of sums of (scalar or
vector valued) random variables should be estimated. Find the appropriate geometric
graph, �nd out, which subgraphs are excluded and apply the appropriate extremal

6 This meta-mathematical remark is due to Tur�an.
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graph theoretical result to this geometric graph. In many cases there are no such
results at hand, and this way we encounter new problems in graph theory.

• There are many applications of Tur�an and Ramsey theorems in number theory and
in computer science. We shall skip discussing the computer science applications and
return very briey to number theory in Section 8.9. Yet we should emphasize here
that the connection to number theory is among the most important ones.
Erdős has written several papers on applications of Ramsey theory and of extremal
graph theory in number theory but their descriptions is beyond the scope of this
paper. As a ‘random selection’ we mention [45,27,5,46,59,15].

These applications provided the motivation for the Ramsey–Tur�an-type problems,
(Problem C) [138], however, Ramsey–Tur�an problems are interesting on their own
and — we feel — they should have been posed and investigated even without these
applications.
In Sections 2–7 we shall primarily discuss the results related to Problems A–C, and

in Section 8 we return to the applications in geometry, analysis and probability theory.
(1) Problem (B) is much simpler than Problems A,C and it shows the clear relation

between Ramsey and Tur�an Theorems. In Problems A,C asymptotic results are known
only in some special cases. The general results indicate that probably the chromatic
number — playing an important role in extremal graph problems — should be replaced
by some version of the arboricity number arb(L), where arb(L) is the minimum number
of classes into which V (L) can be partitioned so that each class spans a tree or forest
in L. Some version ARB(L) of arb(L) will be de�ned in Section 2.6. Yet, no sharp
asymptotics on RT(n; L; m), are known for general m= o(n).
It is easy to see that

Theorem 11 (S�os [138]). Let R:=R(k1; : : : ; kr) be the Ramsey number and T (n; k1; : : : ; kr)
be the maximum number of edges a Gn can have if Gn can be r-colored without a
Kki in the ith color, i = 1; : : : ; r. Then

T (n; k1; : : : ; kr) = ext(n; KR+1) =
(
1− 1

R

)(
n
2

)
+O(1):

Here e(Gn)6ext(n; KR+1) is obvious: assuming the contrary we would have an
r-colored KR+1⊆Gn and for some i we would have in it a Kki of the ith color. The
lower bound follows from the following.

Construction 12 (S�os [138]). Let V (KR) = {x1; : : : ; xR}. Fix an r-edge-coloring: ’ :
E(KR)→ [1; r]; where the ith color contains no Kki ; (i = 1; : : : ; r). Consider Tn;R and
color all the edges between the classes Ch and Ck by color ’(xh; xk) (16h¡k6R).

Clearly, Tn;R colored this way contains no Kki of color i (i = 1; : : : ; r).

The problem of T(n; L1; : : : ; Lr) is still ‘easy’. Burr, Erdős and Lov�asz, [28] intro-
duced the following Ramsey function: Let t = t(L1; : : : ; Lr) be the smallest integer for
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which, if v¿ 0 is su�ciently large, then for any r-coloring of Kt(v; : : : ; v) there exists
an i for which there is a monochromatic Li in the ith color. (Here Kt(v1; : : : ; vt) denotes
the complete t-partite graph with vi vertices in its ith class.)

Theorem 13.7 Given r sample graphs; L1; : : : ; Lr; then (for some constant c¿ 0)

T(n; L1; : : : ; Lr) =
(
1− 1

t − 1
)(

n
2

)
+O(n2−c):

Proof: Indeed, if Gn can be colored in r colors so that the ith color contains no Li for
i=1; : : : ; r, then (by the de�nition above) Gn + Kt(v; : : : ; v). Applying the Erdős–Stone
Theorem [71] we immediately obtain the slightly weaker

e(Gn)6
(
1− 1

t − 1
)(

n
2

)
+ o(n2):

To get the stronger error term (i.e. Theorem 13) one should use the (stronger) Erdős–
Simonovits Theorem [40,132].

2. Ramsey–Tur�an theorems for complete graphs

We distinguish three ranges: the ‘no-restriction’ case settled by Theorems 11 and 13,
the intermediate, i.e. where �(Gn)6cn for some �xed c ∈ (0; 1) and the �(Gn) = o(n)
ranges. The most interesting case is the last one, discussed here the most.

2.1. The de�nition of RT(n; L1; : : : ; Lr; o(n))

RT(n; L1; : : : ; Lr; f(n)) is well de�ned for any function f(n). Yet, the notation
RT(n; L1; : : : ; Lr; o(n)), needs some clari�cation. Put

#(L1; : : : ; Lr) := lim
�→0

lim
n→∞

RT(n; L1; : : : ; Lr; �n)
n2

:

Then RT(n; L1; : : : ; Lr; o(n)) is the family of functions 8 #(L1; : : : ; Lr)n2 + o(n2). An
easy application of Cantor diagonalization shows that there exist best f(n):

Claim 14. For every L1; : : : ; Lr there exists a function f(n) = o(n) for which

RT(n; L1; : : : ; Lr; f(n)) = #(L1; : : : ; Lr)n2 + o(n2):

See also De�nition 52 and Problem 9 on threshold functions.

7 This theorem is explicitly formulated in [50] where we refer to it as if it were from [28], but there it is
(at least) di�cult to �nd this otherwise easy statement.
8 More loosely, any of these functions.
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2.2. The o(n) range, complete graphs, odd case

First we consider the case r = 1; L= K2k+1, and m→ ∞; m= f(n) = o(n).
Trivially,

RT(n; K3; o(n)) = o(n2);

since the condition implies

dmax(Gn) = o(n):

Theorem 15 (Erdős–S�os [66]).

RT(n; K2k+1; o(n)) =
(
1− 1

k

)(
n
2

)
+ o(n2):

Construction 17 below provides the lower bound of this result:

Claim 16 (Erdős graph, Fm). For any �xed integer ‘¿ 2 there exists a constant
c¿ 0 such that there exist graphs Fm with girth g(Fm)¿‘, and �(Fm)¡m1−c; for
any m¿m0(‘).

Claim 16 has several di�erent proofs. The �rst one is a ‘random construction’ from
[37]. (Now this is enough for our purposes and we shall return to a slightly more
detailed analysis of this question in Section 2.5.)

Construction 17 (Un;k). Take a Tur�an graph Tn;k with classes C1; : : : ; Ck and put a
graph Fm (m= bn=kc) de�ned in Claim 16 into each of its classes.

Clearly, the resulting graph Un;k contains no K2k+1, since that would imply that one
of its classes (i.e. the graph Fm) contained a K3. Further, �(Un;k) = O(n1−c). This
provides the lower bound in Theorem 15.
Intuitively, the theorem asserts that for large n, if we add (in Tur�an’s theorem on

K2k+1) the extra condition that �(Gn)=o(n), that will have roughly the same e�ect on
the maximum number of edges as excluding a complete graph Kk+1.
Construction 17 (used for one color) can be generalized:

Construction 18 (Erdős–S�os [66]). Put R = R(k1; : : : ; kr). Consider Tn;R and add to
each class C1; : : : ; CR an ‘Erdős’ graph Fm; m = n=R. Color the edges between di�erent
classes according to the appropriate Ramsey coloring of KR; and color the edges in
Ci (i = 1; : : : ; R) arbitrarily.

This coloring gives

RT(n; 2k1 + 1; : : : ; 2kr + 1; n1−c)¿
(
1− 1

R

)(
n
2

)
+ o(n2):
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The lower bound obtained this way can be improved. We shall return to the case of
RT(3; : : : ; 3; o(n)), in Section 3.1.

2.3. The Bollob�as–Erdős graph

The even case q = 2k is much more di�cult. Even the simplest case q = 4 is a
deep theorem. We start with the corresponding construction: with the Bollob�as–Erdős
graph, which is one of the most important constructions in this area. So it deserves
some explanation.
The basic geometric idea is that if we take on the h-dimensional unit sphere Sh

four points x; y; x∗; y∗ so that x; x∗ and y; y∗ are almost antipodal, then these four
points are almost in a plane and they form an almost-rectangle and therefore at least
one of the sides of this 4-gon xyx∗y∗ is longer than

√
2 − �, where � is a small

error-term.

Construction 19 (Bollob�as–Erdős graph [14]). For a given �¿ 0 and a large integer h
we �x a su�ciently large n0(�; h) and assume that n¿n0(�; h) is even. Put �= �=

√
h.

Fix a high-dimensional sphere Sh and partition it into n=2 domains D1; : : : ; Dn=2, of
equal measure and diameter ¡ 1

2�. (This is possible!) Choose a vertex xi ∈ Di and
an yi ∈ Di (for i = 1; : : : ; n=2) and put X = {xi; : : : ; xn=2} and Y = {y1; : : : ; yn=2}. Let
X ∪ Y be the vertex-set of our graph to be de�ned.
(a) Join an x ∈ X to a y ∈ Y if �(x; y)¡√

2− �;
(b) join an x ∈ X to an x′ ∈ X if �(x; x′)¿ 2− �;
(c) join a y ∈ Y to a y′ ∈ Y if �(y; y′)¿ 2− �.

Denote the resulting graph by BEn or BE(n; h; �).

Claim 20. �(BEn) = o(n).

The idea behind this is that if we choose 1
2cn vertices from among x1; : : : ; xn=2, then

the union U of the corresponding domains give a subset or relative measure ¿c and
therefore (by a corresponding isoperimetric theorem) U contains two points A; B with
�(A; B) ≈ 2. Since the diameter of the domains is small, there are two vertices of the
graph, x near to A and y near to B with �(x; y) ≈ 2, so they are joined.

Claim 21. BEn contains no K4.

The idea behind this claim was explained above.

Claim 22. Each vertex of BEn has degree n=4+o(n), as �→ 0 and therefore n→∞.

Indeed, each xi is joined to the yj’s on the ‘opposite approximate halfsphere’.
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2.4. The o(n) range, complete graphs, even case

Theorem 23 (Szemer�edi [142] and Bollob�as–Erdős [14]).

RT(n; K4; o(n)) =
n2

8
+ o(n2):

The upper bound was proved by Szemer�edi, the lower bound by Bollob�as and Erdős,
(by the above construction), and even after having this result it took years to determine
RT(n; K2k ; o(n)).

Theorem 24 (Erdős–Hajnal–S�os–Szemer�edi [52]). For q= 2k;

RT(n; Kq; o(n)) =
1
2
3q− 10
3q− 4 n

2 + o(n2):

For large q this again means that the e�ect of condition �(Gn) = o(n) is roughly
the same as excluding a K[q=2] without any restriction on �(Gn). Though the formula
above may seem mysterious, it becomes transparent if we rephrase the above theorem
as follows. We need the following.
For a given property A of graphs the corresponding extremal problem is to

maximize e(Gn) for Gn ∈ A:

De�nition 25. A sequence of graphs, (Sn) will be called asymptotically extremal if
Sn ∈ A and

e(Sn)¿(1− o(1)) max
Gn∈A

e(Gn):

Theorem 26. Put m := d4n=(3k − 2)e. Take a Bollob�as–Erdős graph BE(m; h; �m) and
a Tur�an graph Tn−m;k−1. Join each vertex of BE(m; h; �m) to each vertex of Tn−m;k−1.
Put an Erdős graph Fm∗ into each class of Tn−m;k−1, (to spoil the large independent
sets). Choosing �m and h appropriately, the resulting graph Hn is approximately
regular:

dmax(Hn)− dmin(Hn) = o(n);
and Hn is an ‘asymptotically extremal sequence’ for the problem of RT(n; K2k ; o(n)):

(a) K2k * Hn,
(b) �(Hn) = o(n),
(c) e(Hn)¿RT(n; K2k ; o(n))− o(n2).

Replacing o(n) in some problems RT(n; L; o(n)) by slightly smaller functions, say
by f(n) = n=log n perhaps one could get smaller upper bounds.

Problem 1: Is it true that for some c¿ 0,

RT
(
n; K4;

n
log n

)
¡

(
1
8
− c

)
n2?
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Similarly, we could ask, what happens if o(n) is replaced by O(n1−c) for some �xed
but small constant c¿ 0:

Problem 2: Under which conditions on L can one state that there exist two positive
constants c; c1¿ 0 for which

RT(n; L; o(n))− RT(n; L; f(n))¿c1n2 for every f(n) = O(n1−c) ?

2.5. Geometric constructions, isoperimetric problems

The interaction between graph theory and other parts of mathematics, e.g., geometry,
number theory, etc. became more and more evident and intensive in the last two
decades.
We have already mentioned that there is a connection between some geometric

problems and Ramsey theory, see Section 1.2. As to the connection of extremal graph
theory and geometry, one could say that this connection is perhaps even stronger and
more many sided. Indeed, right at the beginning, Erdős applied Tur�an’s theorem and
other extremal graph results in geometry. Among others, he applied these methods to
give the �rst, fairly simple estimates on the number of unit distances in his famous
problem:

Problem 3 (Unit distances). Given n points x1; : : : ; xn in Rh, what is the maximum
number of pairs (xi; xj) for which �(xi; xj) = 1 (or any constant)?

Let us consider the graph whose vertices are the points xi and the edges are the
pairs with �(xi; xj) = 1. Using the observation that in the plane this graph does not
contain K2;3 — since two circles intersect in at most two points — Erdős concluded
that in the plane the number of unit distances is O(n3=2). Similarly, in R3 the graph
does not contain K3;3, therefore the number of unit distances is O(n5=3). (Unfortunately
these estimates are far from the conjectured O(no(1)), see [35].)
Later, in some sense these observations were (implicitly) used in the opposite direc-

tion: Erdős, R�enyi and T. S�os [61] and Brown [17] constructed �nite geometric graphs
which showed that

ext(n; K2;2) = 1
2n
3=2 + o(n3=2)

and

ext(n; K3;3)¿c3;3n5=3 + o(n5=3):

All these 9 and many other cases [116,11,134,79] show that geometric graphs can often
be transformed into �nite geometric graphs to get interesting constructions

9 Above we were interested in K2(2; 3), not in K2(2; 2) but the result for K2(2; 2) is the transparent one
which we wanted to emphasize here, to show the interaction between geometry and extremal graph theory,
For our reasons the Eszter Klein from [33] construction would be equally good.



M. Simonovits, V.T. S�os /Discrete Mathematics 229 (2001) 293–340 305

in graph problems. For a detailed discussion of such interactions see the survey of
S�os [139].

Remark 27. More recently algebraic geometric methods also provided beautiful con-
structions, a breakthrough in the area of extremal problems with bipartite excluded
subgraphs, see [102], and then [6].

The reason why geometric observations can be used to get lower bounds in ordinary
extremal graph theory is that if in Euclidean or a�ne or projective geometry some
con�guration is excluded, that often can be translated into graph-theoretical language.
This provides an in�nite graph without some subgraph L. To get a �nite graph con-
struction, �rst we should describe geometry in terms of analytic geometry, then replace
the �eld of real numbers by a �nite �eld. Often L will be excluded in the resulting
�nite graph. 10

It is perhaps much less known, that in Ramsey–Tur�an problems High Dimensional
Isoperimetric Theorems play important role.
In our simplest case we would need graph sequences (Gn) for which

�(Gn) = o(n) and K3 * Gn: (1)

Clearly, (1) implies that

�(Gn)→ ∞: (2)

The random graph construction of Erdős [37] has both properties (1) and (2) and
therefore it can be used in many Ramsey–Tur�an problems (see e.g. Construction 18).
However, to solve the problem of RT(n; K4; o(n)) we are interested in more explicit
graphs, because, following the construction of Bollob�as and Erdős, we want to take two
copies of such graphs and join them by many edges, (i.e., by positive edge density)
without getting K4. However this breaks down in case of random graphs. There are (at
least) three famous graphs which could replace the random construction in such cases:
the Borsuk graph, the Kneser graph, [104] and the Margulis–Lubotzky–Phillips–Sarnak
graphs [108–110,105,106].
Bollob�as and Erdős used a discretized version of the Borsuk graph to provide a

lower bound for RT(n; K4; o(n)), in [14]. The fact that for the graph BEn constructed
by them �(BEn) = o(n) was proved by applying an isoperimetric theorem.
The Borsuk graph is de�ned as follows: 11

Construction 28 (Borsuk graph). The vertices of B(h; �) are the points of an h-dimension
sphere Sh and we join two points x; y by an edge if �(x; y)¿ 2− �.

10 But not always, e.g. if we choose the parameters in the Brown construction carelessly, the three-dimensional
spheres will contain straight lines and the proof will not work.
11 Here Sh denotes (h− 1)-dimensional unit sphere in Rh.
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One of its important features is that it contains no short odd cycles, since each edge
is joined only to ‘almost antipodal’ vertices. The other important feature is that its
chromatic number is h+1. It has also a third important feature, connected to the high
chromatic number: its independent sets are of small measure. If we wish to �nd a large
independent subset of Sh, that means that we are looking for a large subset without
distances ¿2− �. A corresponding ‘isoperimetric’ theorem asserts that

Theorem 29 (Schmidt [120]).12 If A⊆Sh is an arbitrary measurable set not contain-
ing two points of distance ¿2− � and B is a spherical cap in Sh of diameter 2− �;
then �(A)6�(B) (where � is the Lebesgue measure).

Corollary 30. If A⊆Sh is an arbitrary measurable set not containing two points of
distance ¿2− � 13 then

�(A)62e−(1=2)�h:

Construction 31: The Kneser graph KN(m; ‘) is de�ned as follows: An m-element set
S is �xed and the vertices of the graph are the n := (m‘ ) ‘-subsets of this S; two such
‘vertices’; i.e. ‘-tuples are joined i� their intersection is empty.

It is interesting to note that, though the Kneser graph is similar in many respects to
the Borsuk graph, it is useless for our purposes since it may have too large independent
sets, e.g., put m = 3‘ − 1. Here KN(3‘ − 1; ‘) + K3 and �(KN(3‘ − 1; ‘)) = ‘ + 1.
However, the independence number is

�(KN(3‘ − 1; ‘)) ≈ 1
3v(KN(3‘ − 1; ‘)):

To close this short section we remark that in connection with the Kp-independence
number Erdős conjectured and Bollob�as proved the corresponding generalization of
Schmidt’s result, see Section 7.

2.6. Missing asymptotics and the arboricity number

One of the basic problems in Ramsey–Tur�an theory (see [52]) is:
Given a graph L, which graph-theoretic properties of L inuence #(L) de�ned in 2.1?
As we have mentioned in the Introduction, for ordinary Tur�an-type extremal prob-

lems the Erdős–Stone–Simonovits theorem [64] immediately provides the asymptotical
behavior of the solution if p ¿ 1, and this asymptotics depends only on the chromatic
numbers of the forbidden graphs. No analog results are known for Ramsey–Tur�an
problems. Perhaps the chromatic number of Theorem 4 should be replaced by a mod-
i�cation of arb(L). In this section we shall discuss: when does the ‘�(Gn) = o(n)’

12 Here we could formulate the results also in a more general form, see [13], yet we restrict ourselves to
Lebesgue-measurable sets.
13 In the previous statement it did not matter, which way do we measure the distances: in the space or on
the surface, along geodesics, here we rather �x that in the space.
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condition change the extremal number signi�cantly and when it does not. Further, we
shall discuss also: why is the arboricity important here?

Claim 32. If for a graph L the arboricity arb(L) = �(L); then

ext(n; L)− RT(n; L; o(n)) = o(n2):

The heuristic explanation of this claim is that if coloring the vertices of L in �(L)
colors we have many edges between the color classes in the sense that any two classes
must span a cycle, then the extra condition on the independence number does not de-
crease the maximum but by o(n2). On the other hand, many examples suggest that if
there are color classes weakly joined to each other, then the extremal number noticeably
drops.
To prove Claim 32, put p := �(L) − 1. Take Construction 17 with an Fm having

large girth, say g(Fm)¿v(L). Clearly, the resulting graph Un;p contains no L and
�(Un;p) = o(n). Hence (by Theorem 4)

ext(n; L)¿RT(n; L; o(n))¿e(Un;p)¿e(Tn;p) = ext(n; L)− o(n2):
K(3; 3; 3) is a good example here. Indeed, it is trivial that arb(K(3; 3; 3)) =

�(K(3; 3; 3)) = 3. Therefore

Theorem 33.

RT(n; K(3; 3; 3); o(n)) = ext(n; K(3; 3; 3)) + o(n2) =
(
1− 1

2

)(
n
2

)
+ o(n2):

More generally; if p¡s6t; then

RT(n; Kp+1(s; t; : : : ; t); o(n)) = ext(n; Kp+1(s; t; : : : ; t)) + o(n2)

=
(
1− 1

p

)(
n
2

)
+ o(n2):

One can also see that

• arb(L)¿2 except if L is a tree or a forest.
• If L can be colored in h colors so that (the coloring is a ‘good’ vertex-coloring and)
the �rst color is used only s¡h times then arb(L)¡�(L).

Below we need a modi�ed version of the arboricity.

De�nition 34 (Modi�ed arboricity). The ‘modi�ed’ arboricity ARB(L) of a graph L
is the minimum ‘ for which the following holds:

• either ‘ is even and arb(L)6‘=2,
• or ‘ is odd and we can delete a set V ∗ of independent vertices so that
arb(L− V ∗)6 1

2 (‘ − 1).

To compare the two notions, observe that arb(K‘) = d‘=2e; ARB(K‘) = ‘. One of
the main results of [52] is that for given ARB(L) the complete graph is ‘the worst’:
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Theorem 35 (Arboricity, one color, Erdős, Hajnal, S�os and Szemer�edi [52]). IfARB(L)
6‘ then

RT(n; L; o(n))6RT(n; K‘; o(n)) + o(n2):

Right now the case of K3(2; 2; 2) seems to be the �rst real di�culty. Since
ARB(K3(2; 2; 2)) = 4, therefore

#(K3(2; 2; 2))6#(K4) = 1
8 :

No improvement of this bound is known. One way to settle this question would be
to show that the Bollob�as–Erdős graph (or some slight modi�cation of it) contains no
K3(2; 2; 2). We cannot decide even this (seemingly simple) question.

Problem 4: (a) Decide if RT(n; K3(2; 2; 2); o(n)) = o(n2) or not.
(b) Decide if RT(n; K3(2; 3; 3); o(n)) = o(n2) or not.
(c) Can one prove that (some version of) the Bollob�as–Erdős graph contains no

K3(2; 2; 2)?

2.7. Ramsey–Tur�an problems, Szemer�edi lemma, weighted extremal problems,
multigraph problems

There are only a few cases where we can solve satisfactorily the Ramsey–Tur�an
problems. In some other cases we do not know the extremal densities or the (asymp-
totically) extremal structures, yet we can prove that there exist relatively simple asymp-
totically extremal graph sequences. One such case is when we consider many colors
and complete graphs.
For two disjoint sets of vertices, X; Y ⊆V (G), we denote by e(X; Y ) the number of

edges joining them and de�ne the density

d(X; Y ) :=
e(X; Y )
|X | · |Y | :

First we formulate one of our results in a rather simpli�ed form.

Theorem 36 (Erdős, Hajnal, Simonovits, S�os and Szemer�edi [50]). Given the integers
k1; : : : ; kr¿3; for RT(n; Kk1 ; : : : ; Kkr ; o(n)) there exists a �xed t and a sequence of
asymptotically extremal graphs (Sn) such that the vertices of Sn can be partitioned
into t classes V1; n; : : : ; Vt;n where

(a) e(Vi;n) = o(n2) for i = 1; 2; : : : ; t; and
(b) either d(Vi;n; Vj;n) = 1

2 + o(1) or d(Vi;n; Vj;n) = 1 + o(1) for 16i¡ j6t.

As a matter of fact, in [50] we formulate a more general form of Theorem 36,
asserting that in the above cases there are always asymptotically extremal graph se-
quences which are generalized Bollob�as–Erdős graphs. There the extra information is
that in the above theorem, in case when two classes are connected by density 1

2 , then
the corresponding two classes span a Bollob�as–Erdős graph.



M. Simonovits, V.T. S�os /Discrete Mathematics 229 (2001) 293–340 309

One of the key tools used in this area is the Szemer�edi Regularity lemma [143]
generalized to many colors [50]. (For these and other applications of the Regularity
Lemma and for some generalizations see [100].)
Regularity condition: Given a graph Gn and two disjoint vertex sets in it, X and Y ,

we shall call the pair (X; Y ) �-regular if for every subset X ∗ ⊂X and Y ∗ ⊂Y satisfying
|X ∗|¿�|X | and |Y ∗|¿�|Y |;

|d(X ∗; Y ∗)− d(X; Y )|¡�:

The regularity condition means that the edges behave (in some weak sense) as if
they were random. If the graph G is edge-colored in r colors, let d�(X; Y ) denote the
density in color ��.

Generalized Regularity Lemma: For every �¿ 0; and integers r and �0 there exists a
�0(�; r; �0) such that for every r-edge-colored Gn V (Gn) can be partitioned into sets
V0; V1; : : : ; V� — for some �0¡�¡�0(�; r; �0) — so that |V0|¡�n; |Vi| = m (the
same) for every i¿ 0; and for all but at most �( �2 ) pairs (i; j); for every X ⊆Vi and
Y ⊆Vj; satisfying |X |; |Y |¿�m; we have

|d�(X; Y )− d�(Vi; Vj)|¡�

for every 16�6r.

The above theorem does not explicitly deal with the edges inside the classes Vi. This
is why we need to put a lower bound �0 on the number of classes. If we choose �0 large
then the number of edges inside the classes will be negligible compared to the total
number of edges, so in most problems we may forget about them. On the other hand,
�0 is an upper bound on the number of classes which enables us to treat the whole
graph as if it were the union of just a few randomlike bipartite subgraphs G(Vi; Vj).

2.7.1. Multigraphs, weighted graphs
To solve the Tur�an–Ramsey problem RT(n; K2‘; o(n)), in [52] weighted extremal

graph problems were used: having applied the Regularity lemma, one obtained a
‘reduced’ graph the edges of which had weight 1 and 1

2 , depending on (b) of Theorem
36. In these weighted extremal graph problems a weight function w : E(Gn) → [0; 1]
is given on the edges of Gn and a family L of weighted subgraphs is also given.
Here L⊂Gn means that each edge of L has 6 weight in L than in Gn. Of course,
the weighted graph extremal problems are strongly connected to multigraph extremal
problems: in some sense they are equivalent.
Harary and Brown [26] and then Brown, Erdős and Simonovits [19–25] considered

multigraph extremal problems where the multiplicities were 1 and 2. Above the multi-
plicities (or weights) are 1=2 and 1 and that is not much di�erence. So it turned out that
these Ramsey–Tur�an problems are strongly connected with a particular kind of multi-
graph extremal problems, which can algorithmically be solved. In those cases where
we want to solve a Ramsey–Tur�an problem, one can de�ne weighted complete graphs
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and weighted Ramsey theorems and reduce the solution of Ramsey–Tur�an problems
(for many colors and complete graphs) to the solution of weighted Ramsey problems.
For details see [50]. It may happen that all the Ramsey–Tur�an problems for ordinary
graph — assuming that we look for a solution up to o(n2) edges — can be reduced
to such multigraph extremal problems. However, that we cannot prove, not even for
one color.

2.8. Permissible densities

Tur�an- or Ramsey–Tur�an-type problems may be asked, investigated in various set-
tings. By Theorem 4, for ordinary graphs — in the Tur�an problem — the densities

lim
n→∞

ext(n; L)( n
2

)
have very special forms: 1 − 1=p. One can ask in other settings the same: which are
the possible densities? It turned out, that — though in the simplest case of multigraph
extremal problems these densities form a well ordered set — practically we do not know
too much about the set of densities in the other cases. The following consequence of
Theorem 35 shows that (at least) these densities for Ramsey–Tur�an problems cannot
be arbitrary:

Theorem 37 (Erdős, Hajnal, T. S�os and Szemer�edi [52]). Let L be an arbitrary �xed
graph. Let

a‘ =
1
2
3‘ − 9
3‘ − 3 if ‘ is odd and a‘ =

1
2
3‘ − 10
3‘ − 4 if ‘ is even:

Then for some odd ‘

#(L) = lim
n→∞

RT(n; L; o(n))( n
2

) ∈ [a‘; a‘+1]:

The sequence (a3; a4; a5; a6; : : :) = (0; 18 ;
1
4 ;
2
7 ; : : :) is strictly increasing. As a result,

e.g., there is no density in ( 18 ;
1
4 ).

3. Some results on many colors

3.1. Triangles

Theorem 38 (Erdős and S�os [68]).

RT(n; 3; 3; o(n)) =
n2

4
(1 + o(1)):

Erdős, and S�os [69] conjectured what was proved only later:
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Theorem 39 (Erdős, Hajnal, T. S�os and Szemer�edi [52]).

RT(n; 3; 3; 3; o(n)) =
(
2
5
+ o(1)

)
n2:

To explain the general case we need a de�nition.

De�nition 40. R∗[r](L1; : : : ; Lr) is the maximum R for which one can r-color KR so that

(a) no monochromatic Li of color �i is in KR, for 16i6r,
(b) each vertex is incident only to at most r − 1 colors.

Now, Theorem 39 immediately follows from

Theorem 41 (Erdős–Hajnal–S�os–Szemer�edi [52]).

RT(n; 3; 3; : : : ; 3; o(n)) =
(
1− 1

R∗r (3; 3; : : : ; 3)

)(
n
2

)
+ o(n2):

The reason why we use here R∗[r](3; 3; : : : ; 3) is that if we color a Tn;R∗ according to
De�nition 40, so that some color ��(i) is missing from the colors used for the edges
between Ci and the other classes, then we can put into each class Ci of this Tn;R∗ an
Erdős graph F[n=R∗] and color it with ��(i). Thus we get an r-coloring of Tn;R∗ without
monochromatic triangles.

Remark 42 (Local Ramsey numbers). We have mentioned that one of the beautiful
aspects of Ramsey–Tur�an theory is that this area is intrinsically connected to many
other areas. One of these areas is the ‘Theory of Local Ramsey Numbers’, where for
given L1; : : : ; Lr and ‘¡r we consider r-colorings of Kn where each vertex is incident
to at most ‘ colors and (a) of De�nition 40 is satis�ed. Here we see the connection
to this �eld, for ‘ = r − 1.
Actually, [66] was the �rst place where the notion of Local Ramsey Coloring arose.

Later (1987) Truszczynski and Tuza [146] and Gy�arf�as, Lehel, Schelp and Tuza [81]
started more systematic investigation of Local Ramsey Coloring, they and Ne�set�ril and
R�odl extended these investigations to hypergraphs, [82] and somewhat later Galluccio,
Simonovits and Simongi rediscovered it, again in connection with a Ramsey theoretical
problem [80].
Erdős conjectured that R∗[r](3; : : : ; 3) = R[r−1](3; : : : ; 3), but this was disproved by

Fan Chung [29], (oral communication).

Remark 43. Denote by m3(r) the largest integer for which one can edge-color Km3(r) by
r colors so that none of the colors contains a monochromatic triangle. m3(2) = 5;
m3(3)=16 are well-known, but Folkman proved m3(4)¡ 64. (A trivial induction gives
m3(r + 1)¡ (r + 1)m3(r) + 1 and Folkman’s result shows that equality does not hold
for r =4.) The exact determination or even to �nd good bounds on m3(r) seems very
di�cult. It is not even known if m3(r)1=r → ∞ is true.
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3.2. The other end?

Above we excluded one or more sample graphs L and considered (in the ‘inverse
formulation’ the problem: if a graph Gn has e edges, how large must �(Gn) be. Mostly
we were interested in the case when e(Gn) is relatively large and we wish to �nd
the minimum of �(Gn). In some applications Ajtai, Koml�os and Szemer�edi needed the
other end: the case when e(Gn) is small.

Theorem 44 (Ajtai, Koml�os and Szemer�edi [3]). There exists a constant c¿ 0 such
that if e(Gn) = tn and K3 * Gn then

�(Gn)¿c
n
t
log t:

The theorem was generalized to arbitrary excluded Kp by Ajtai, Erd�os, Koml�os and
Szemer�edi [1], and to hypergraphs by Ajtai, Koml�os, Pintz, Spencer and Szemer�edi
[2], see below.

Remark 45. One of the applications was the estimate on the Ramsey number R(3; k).
Both the upper bound, using Theorem 44, [3] and the matching lower bound obtained
by Kim [97] are among the most important results in Ramsey Theory for ordinary
graphs:

c1n2

log n
¡R(3; n)¡

c2n2

log n
:

Another important application was to give an existence proof for an in�nite Sidon
sequence ak for which the number of ak ’s below n for any n is greater than c(n log n)1=3

for some c¿ 0, [4]. (A sequence of integers is called a Sidon sequence if all the
pairwise sums are distinct.)
That time this was a breakthrough, now it is strongly superseded by Ruzsa [119].
We close this part with the following

Problem 5 (Minimum independence number). For given n and e; put

a(n; e) :=min{�(Gn) : e(Gn) = e and K3 * Gn}:
Determine (or estimate?) the minimum of a(n; e) as e varies from 1 to [n2=4].

4. Hypergraph results and problems

For an r-uniform hypergraph G(r) we denote by �(G(r)) the largest subset of V (Gn)
not containing any hyperedge of G(r).
The basic problems to be solved here are of the following types:

1. Tur�an hypergraph problems: Given a forbidden L(r), determine or estimate the
maximum number of hyperedges G(r)n can have without containing L(r).
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2. Ramsey problems: As we know, Ramsey theorem holds for hypergraphs as well.
The problems on the corresponding Ramsey functions are even more di�cult.

3. Ramsey–Tur�an hypergraph problems: Given a forbidden L(r), and the integers n,
and m6n determine or estimate the maximum number of triples G(r)n can have
without containing L(r) and having independence number �(G(r)n )¡m.

4. Given a sequence mn = o(n), under which condition on L(r) is there an essential
di�erence between the answers for the �rst and third problems above.

Here for complete graphs there is a sharp di�erence between ordinary graphs (r=2)
and hypergraphs (r ¿ 2). We may de�ne two corresponding constants

�(L(r)) = lim
n→∞

ext(n; L(r))
nr

and

(L(r)) = lim
�→0

lim
n→∞

RT(n; L(r); �n)
nr

: (3)

The existence of the limit � follows from a simple averaging argument [96], while the
existence of the limit of limn→∞RT(n; L(r); �n)=nr in (3) follows relatively easily from
vertex-multiplication. In general, there are some results showing that in some cases
these constants are equal and in some others they di�er. Below we shall discuss these
new phenomena for r ¿ 2.
An easy consequence of a theorem of Erdős is

Proposition 46 (Erdős [38]).

ext(n; L(r)) = o(nr)

i� L(r) has a vertex-coloring in r colors where each hyperedge has r distinct colors.

This characterizes the cases when �(L(r)) = 0 and consequently, (L(r)) = 0 as well.
Erdős and S�os proved that

Theorem 47 (Erdős and S�os [69]). If an r-uniform hypergraph L(r) is such that for
each hyperedge e of L(r) there exists another hyperedge; f intersecting e in at least
2 vertices; then

�(L(r)) = (L(r)):

Obviously, the complete hypergraphs K (r)t satisfy the condition of Theorem 47
(r¿3; t ¿ r). This implies e.g., that when L(r) =K (r)t is the complete r-uniform hyper-
graph, the limits coincide. It is easy to see [96] that

lim
ext(n;K (r)t )( n

t

) = �r; t ¿ 0 as n→ ∞
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exists, but the value of �r; t — even in the simplest case of K (3)4 is not known. Yet,
this yields that �(K (r)t ) = (K

(r)
t ). (The famous conjecture of Tur�an asserts that this

�3;4 = 5
9 and one of the extremal structures is obtained as follows: n points are divided

into three classes C1; C2; C3 and the triples are all the ones having two points in a Ci
and one in Ci+1 (i = 1; 2; 3, where C4 :=C1) and all the transversal triples, i.e. where
the three vertices belong to three di�erent classes.)
The same way, Theorem 47 implies that if L(3)(4; 3) is the 3-uniform hypergraph of

four vertices and three triples, then the two limits coincide for this excluded subhyper-
graph as well. There is a third important consequence of Theorem 47.
Let L(r) be an arbitrary r-uniform hypergraph and L(r)[t] be the hypergraph obtained

from L(r) by ‘blowing up’: by replacing each vertex v by a set Cv of t new vertices and
joining r new vertices z1; : : : ; zr belonging to r distinct classes Cv1 ; : : : ; Cvr , respectively,
by a hyperedge if (v1; : : : ; vr) formed a hyperedge in L(r).

Theorem 48 (Erdős [43]). For any �xed integer t,

ext(n; L(r)[t])− ext(n; L(r)) = o(nr):

(This can be regarded as a generalization of the Erdős–Stone theorem.) Now, if we
take any ext(n; L(r)[t]) for t¿2, that will satisfy the conditions of Theorem 47. As
a matter of fact, if we �x a representing set S of the hyperedges in L(r) and double
only the vertices in S, the resulting L(r)S will also satisfy the condition. So for every
hypergraph L there is a slightly larger L′, obtained by blowing up some vertices of L,
for which (L′) = �(L′).
These results seem to show that for r ¿ 2 the extra condition: ‘the largest inde-

pendent set has size o(n)’ has no signi�cant e�ect here. This might be surprising, at
least for complete graphs, knowing that for ordinary complete graphs the opposite is
true (see Section 2.2) and that the conjectured extremal hypergraphs for K (3)4 have
independent sets of size n=3. 14

On the other hand, there are cases when the two constants di�er.
Denote by L(3)(5; 4) the hypergraph having the vertices x; y; z1; z2; z3 and the edges

(x; y; zi); i = 1; 2; 3 and (z1; z2; z3). Clearly

ext(n;L(3)(5; 4))¿cn3

and Erdős and S�os proved [69] that

RT(n :L(3)(5; 4); o(n)) = o(n3):

A more general case where the two constants di�er is

14 Originally there was one conjectured extremal graph, described above, but then Brown gave a 1-parameter
family of extremal graph structures [18], Kostochka extended it to a many-parameter family [103] and van
der Flaass simpli�ed Kostochka’s construction [74]. Yet all these conjectured extremal graphs have large
independent sets.
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Theorem 49 (Erdős and S�os [69]). Assume that L is an r-uniform hypergraph with
the following property: the vertices of L can be r-colored by 1; : : : ; r and the edges
2-colored 15 in RED and BLUE so that

(a) All RED edges contain one vertex from each vertex-color-class.
(b) All BLUE edges are contained in the rth vertex-color-class.
(c) The BLUE edges can be enumerated so that each BLUE edge intersects the

union of the previous BLUE edges in at most one vertex. Then

RT(n; L; o(n)) = o(nr):

If L satis�es the conditions of this theorem but cannot be colored in r colors so that
each hyperedge has r distinct colors then the two constants di�er: = 0, �¿ 0.
Condition (c) may seem to be somewhat arti�cial but it comes from the fact that in

the (indirect) proof the L is built up recursively: the edges are found in this order.
The following problem refers to the simplest case not covered by Theorem 49.

Problem 6 (Erdős and S�os [69]). Let L(3)(7; 11) be the hypergraph having the vertices
x;y1; y2; y3; z1; z2; z3 and the 11 triples (x; yi; zj); (y1; y2; y3); (z1; z2; z3). Is it true that

RT(n;L(3)(7; 11); o(n)) = o(n3)?

Until now we have seen cases where the two limits were positive and equal, and
where � was positive and  was 0. The following problem was posed in [69];

Problem 7: Does there exist a hypergraph L(r) (r¿3) for which

0¡(L(r))¡�(L(r))?

Frankl and Rődl [76] proved the existence of graphs for arbitrary r¿3, using random
graph methods. Sidorenko — using many ideas of Frankl and Rődl — replaced their
existence proof by a simple construction, for r = 3.

Construction 50 (Sidorenko [131]). Let L(3)2m+1 be the 3-uniform hypergraph whose
vertices are a0; : : : ; am and b1; : : : ; bm with the triples

{aibiaj} and {aibibj} for 16j¡ i6m:

Theorem 51 (Sidorenko [131]).

0¡(L(3)7 )¡�(L(3)7 ):

If one lists the hypergraph extremal results, one must realize that it is very seldom
that �(L(r))¿ 0 and its value is known as well. So one question is whether we know
at all results on hypergraph Ramsey–Tur�an problems where we know both constants

15 Here coloring is not a proper coloring, just a partition.
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�(L(r))¿ 0 and (L(r)) and �(L(r))¿(L(r)). The �eld is full with di�cult questions.
We close this part with the following

Problem 8: Find a function f(n)→ ∞; ‘not too small’, for which
RT(n; K (3)4 ; f(n)) = o(n

3):

More generally, the same question may be asked for any graph or hypergraph L
instead of K (3)4 (for which (L)¿ 0).

De�nition 52 (Threshold). Call f(n) a ‘threshold function’ for L(r) if g(n) = o(f(n))
implies

RT(n; L(r); g(n)) = o(n3);

but if g(n)=f(n)→ ∞ then

RT(n; L(r); g(n)) = n3

for some positive constant .

Problem 9: Does there exist such a threshold function for every L(r)? If not, give
conditions when it does?

Remark 53. Obviously, if RT(n; L(r); o(n)) = o(nr) but ext(n; L(r))¿cnr , then n is a
threshold function.

4.1. Applications

One important application of Hypergraph Ramsey–Tur�an problem was where Koml�os,
Pintz and Szemer�edi [99] improved the lower bound in Heilbronn’s problem (for a more
detailed account see also Beck [10]), thus disproving Heilbronn’s conjecture:

For n points in a unit disk in the plane, no three on a line, take the minimum
of the areas of the corresponding ( n3 ) triangles. Let �(n) be the maximum of
this minimum, taken over all the positions of the n points. What is the order of
magnitude of this �(n)?

Conjecture 10 (Heilbronn). �(n)6c=n2, for some constant c¿ 0.

If we have n points in the unit disk, P1; : : : ; Pn, then the half-lines P1 → Pj cut
the disk into n− 1 parts. So the area of the smallest part is at most �=(n− 1). Erdős
constructed n points so that the minimum area is larger than c=n2, by taking an n× n
square grid and n points from it, no three on a line. 16 It took roughly 30 years to
show that there are cases where the minimum area is much larger than 1=n2.

16 The existence of n such points is nontrivial but not too di�cult.
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Theorem 54 (Koml�os, Pintz and Szemer�edi [99]).

�(n)¿c
log n
n2

:

Remark 55. As to improving the upper bound, Roth proved [117] that �(n)¡ 1=n1+�

if �¡�0 = 1:117 : : : and n is large enough. Koml�os, Pintz and Szemer�edi improved
Roth’s result, showing that �¡ 8=7 = 1:142857 would also do above [98].

The basic tool to prove the lower bound was an extension of Theorem 44 to hyper-
graphs, due by Ajtai et al. [2].

Theorem 56. Let Gn be a (k + 1)-uniform hypergraph with n vertices and average
degree t. It is proved that if k.t.n and if Gn contains no cycle of length 2; 3 or 4,
then the stability number �(Gn)¿ck(n=t)(log t)1=k .

5. Positive edge densities in graphs and hypergraphs

Here we shall discuss edge-density conditions and their connection to quasi-random
graphs. Quasi-random graphs and hypergraphs form a more and more important area
in random graph theory.
Thomason [144,145] and Chung, Graham and Wilson [32] gave some characterization

of randomlike graph sequences, Chung and Graham [31] extended this to hypergraph
sequences, Frankl, R�odl and Wilson [77] gave some characterizations of ‘randomlike’
matrix sequences, etc. Some results of Erdős and S�os [69] on hypergraphs is also one
of the roots of the theory of quasi-random combinatorial structures. For some results
related to this topic see [77,30–32,136,137]. There are — among others — two main
‘themes’ in this �eld: that the edges (hyperedges) are uniformly distributed and that
all small graphs occur in these graphs.
One of the weakest ‘edge-density’ conditions is that �(G(r)n ) = o(n). Let (G

(r)
n ) be a

sequence of r-uniform hypergraphs. Below we shall de�ne several di�erent uniformity
conditions, which form kind of a hierarchy.

Condition A: For every �¿ 0 there exist an �=�(�)¿ 0 and n0(�) so that if n¿n0(�);
then for every induced subgraph H (r)m ⊆G(r)n , with m¿�n, we have

e(H (r)m )¿�
(
m
r

)
:

Condition B(c): For a �xed c¿ 0, for every �¿ 0 and n0(�), if n¿n0(�); and m¿�n
then for every induced subgraph H (r)m ⊆G(r)n , we have

e(H (r)m )¿c
(
m
r

)
:
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Condition C (c; �; � ). For �xed c¿ 0; �; �¿ 0 (where �¡min(c; 1− c)), there exists
an n0 such that if n¿n0 and m¿�n, then for every induced subgraph H (r)m of G(r)n ,

(c − �)
(
m
r

)
¡e(H (r)m )¡ (c + �)

(
m
r

)
:

Condition D(c): For �xed c¿ 0, for every � where �¡min(c; 1 − c), there exist an
� = �(�) ∈ (0; 12 ), with �(�)→ 0 as �→ 0, and there is an n0 such that if n¿n0 and
m¿�n then for every induced subgraph H (r)m ⊆G(r)n , we have

(c − �)
(
m
r

)
¡e(H (r)m )¡ (c + �)

(
m
r

)
:

Erdős and S�os showed that

Theorem 57 (Erdős and S�os [69]). For ordinary graphs (r = 2); and for every �xed
k ¿ 2; if (Gn) is any graph sequence satisfying Condition A; then Kk ⊆Gn for n large
enough.

R�odl proved that Condition C for r = 2 has an even stronger consequence:

Theorem 58 (R�odl [118]). For ordinary graphs, for every positive integer k and every
c¿ 0 and �¿ 0 such that �¡min(c; 1−c) there exists an �¿ 0 and a positive integer
n0 such that if n¿n0 and Gn is a graph for which every induced subgraph Hm with
m¿�n vertices satis�es

(c − �)
(
m
2

)
¡e(Hm)¡ (c + �)

(
m
2

)
;

then Gn contains all graphs with k vertices as induced subgraphs.

Remark 59. This is (again) strongly connected to the theory of quasi-random graphs.
Condition D is already a ‘quasi-random graph’ property. Restricting ourselves to or-
dinary graphs (r = 2) condition D(c) implies that Gn contains each H as an induced
subgraph asymptotically as many times as in the random graph of edge-probability c.

However, this is not true for hypergraphs. As we mentioned, in [69] Erdős and S�os
constructed a 3-uniform hypergraph G(3) satisfying Condition A but not containing
K (3)4 , not even a L

(3)(4; 3).
A surprisingly simple construction of F�uredi (see [75]) gives the even stronger result:

even the stronger Condition D does not imply the existence of a L(3)(4; 3). F�uredi took
a random tournament Tn and de�ned G

(3)
n on its vertex set as the family of triples

which spanned a directed 3-cycle in Tn. One can easily see that this hypergraph does
not contain L(3)(4; 3): on any four points it has 0 or 2 triangles and satis�es D.
This shows that for hypergraphs even Condition D is not enough to imply the

existence of L(3)(4; 3). It is somewhat surprising that — as Frankl and Rődl proved in
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[76] — there is an in�nite (recursively given) sequence (H (r)i ) of r-uniform hypergraphs
such that if a sequence (G(r)n ) satis�es Condition A, then H

(r)
i ⊆G(r)n if n is su�ciently

large. As a special case, L(3)(7; 11) of Problem 6 is such a graph.
The case of L(3)(4; 3) is fairly important to make a short detour. First we formulate

an old conjecture on its extremal number, which was disproved by Frankl and F�uredi.
Then we explain the motivation of the original construction and the basic idea of
its disproof. Finally we clarify, how these assertions are connected to our hypergraph
Ramsey–Tur�an problems.
Below we mostly (but not entirely) restrict ourselves to 3-uniform hypergraphs and

to the case of one excluded 3-uniform hypergraph L(3).

Construction 60: Take n vertices and partition them into three (roughly) equal classes.
Take all the ≈ 1

27n
3 triplets joining each of the three classes. Then subdivide each of

the three classes into three classes of size ≈ n=9 vertices and take all the

≈ 3 1
27

(n
3

)3

triplets which are completely in an original class and intersect all the three subclasses
of it. Iterate this k times, for k → ∞; getting 1

24n
3 + o(n3) triplets.

Remark 61. This construction can also be described in a less transparent but more
compact way: if the vertices are the integers 1; : : : ; n, then we take those triplets (i; j; k)
which — written in ternary form — for some t = t(i; j; k) ∈ [0; log3 n] have the same
digits in the positions 1; : : : ; t − 1 and three di�erent digits in the tth position.

Erdős conjectured that this is the extremal con�guration for L(3)(4; 3) but this was
disproved by Frankl and F�uredi [75]. They noticed that the above iteration method (i.e.,
taking a hypergraph, replacing each of its vertices by groups of vertices and putting
into the new groups smaller hypergraphs not containing L(3)(4; 3)) works in general
as well. They also noticed that this method provides a better construction if one takes
the L(3)(4; 3)-extremal hypergraph Q(3)6 on six vertices and applies the iteration to the
blown up version: S(3)n :=Q

(3)
6 [n=6]. Here ‘blown up’ means that each vertex of Q

(3)
6 is

replaced by [n=6] independent vertices. The Q(3)6 can more explicitly be described by
�xing that its vertices are 1; : : : ; 6 and the triplets are

(1; 2; 3); (1; 2; 4); (3; 4; 5); (3; 4; 6) (5; 6; 1); (5; 6; 2); (1; 2; 5); (1; 4; 6); (2; 3; 6); (2; 4; 5):

Frankl and F�uredi obtained that

lim
n→∞

ext3(n; L3(4; 3))( n
3

) ¿
2
7
;

or, in another form,

ext3(n; L3(4; 3))¿
1
21
n3 + o(n3):
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As a matter of fact, we could say that it is not that surprising that for L(3)(4; 3);  and
� are equal (by Theorem 47) since it is easy to check that the Construction 60 contains
only o(n) independent vertices. (As a matter of fact, only O(n1−c).) The same holds for
the improved construction. So, if the extremal graph is such an ‘iterated’ construction,
then the two constants are trivially equal. (Watch out: we know that = � in this case
but we do not know the extremal graphs, neither that they are ‘iterated’ graphs.)

Problem 11: Is there a hypergraph L(3) for which there exists an (asymptotically)
extremal graph sequence which satis�es Condition A?

Problem 12: Is there a hypergraph L(3) for which there exists an (asymptotically)
extremal graph sequence which satis�es Condition B?

Problem 13: Is there a hypergraph L(3) for which there exists an (asymptotically)
extremal graph sequence which satis�es Condition C? (or Condition D?)

Erdős and S�os [69] conjecture that such extremal graphs do not exist. Strengthening
the uniformity condition we would get a weaker version:

Problem 14: Assume that k is �xed and that a sequence of 3-uniform hypergraphs
{G(3)n : n ∈ N} is such that there exists a constant c¿ 0 so that for every su�ciently
large n ∈ N every induced subgraph Hm⊆Gn with m¿n=log n vertices has at least
(c + o(1))(m3 ) edges. Is it true that

K (3)k ⊆G(3)n ?

The problem is unsolved even for k = 4. Moreover, even for L(3)(4; 3)⊆G(3)n is
unknown, see [69].

6. Ordinary graphs, the intermediate range

The intermediate range is when we assume that �(Gn)6cn and c¿ 0 is small but
�xed. Ramsey Theorem and Construction 12 give

Corollary 62. For

m¿
n

R(k1; : : : ; kr)
; (4)

RT(n; k1; : : : ; kr ; m) = ext(n; KR+1) =
(
1− 1

R

)(
n
2

)
+O(1):

Hence we will assume that m is large but not too large: n¡R(k1; : : : ; kr ; m) but (4)
does not hold. Mostly we are interested in the case when �(Gn) = o(n). One could
think that the case �(Gn)6cn for small but �xed c¿ 0 is perhaps also tractable.



M. Simonovits, V.T. S�os /Discrete Mathematics 229 (2001) 293–340 321

Below we ask only the simplest questions.
If Gn contains no K3 and �(Gn)6cn, then replacing each vertex of Gn by t inde-

pendent vertices and joining them as the original vertices were joined we get a graph
Gnt without triangles and with �(Gnt)6cnt. This implies the existence of H (c) in the
next problem.

Problem 15: Determine H (c) where

RT(n; 3; cn) = (H (c) + o(1))n2:

Remark 63. Clearly, H (c)6c, since the regarded graphs have maximum degree 6cn.
The solution of this problem, at least for some range of c, is ‘hidden’ in some papers
of Andr�asfai [7,8], and treated in more details in the Habilitation Thesis of Stephan
Brandt [16].

Of course, it is enough to regard here graphs Gn which are triangle-free, with
�(Gn)6cn and which are maximal with respect to being triangle free: adding any
edge to it produces a triangle. For some structural information on such graphs see also
Pach [113].

Problem 16: Determine h(c) where

RT(n; 3; 3; cn) = (h(c) + o(1))n2:

At �rst, Problem 16 may seem to be easy, but it is not. Using the coloring of
the edges of K16 by three colors, say, RED, BLUE and YELLOW, none of which
contains a triangle, one may consider the graph Tn;16 colored according to the above
Ramsey coloring and then delete the YELLOW edges. In the resulting graph Gn we
have �(Gn)6dn=8e and the degrees are around

n− n
16

− 5n
16
=
5n
8
:

So Erdős and S�os conjectured that

RT
(
n; 3; 3;

n
8

)
=
(
5
16
+ o(1)

)
n2;

suggesting that to determine h(c) may not be so easy [67].

7. Kp-independence results

Let the Kp-independence number �p(G) of a graph G be the maximum order of an
induced subgraph in G which contains no Kp. (So K2-independence number is just the
maximum size of an independent set.)
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De�nition 64. For given integers r; p; m¿ 0 and graphs L1; : : : ; Lr , we de�ne the cor-
responding Ramsey–Tur�an function RTp(n; L1; : : : ; Lr; m) to be the maximum number
of edges in a graph Gn of order n such that �p(Gn)6m and there is an edge-coloring
of Gn with r colors such that the jth color class contains no copy of Lj, for j=1; : : : ; r.

The concept of �p(G) was introduced long ago by Hajnal, and also investigated
by Erdős and Rogers, see [62]. (A similar ‘independence notion’ is investigated for
random graphs in a paper of Eli Shamir [123], where he generalizes some results on
the chromatic number of random graphs.)
We start with a result and an open problem, stated in ‘elementary’ terms, related to

the Szemer�edi theorem and Bollob�as–Erdős construction on RT(n; K4; o(n)).

Theorem 65 (Erdős, Hajnal, Simonovits, S�os and Szemer�edi [51]). Assume that (Gn)
is a graph sequence; �3(Gn) = o(n).

(a) If K5 * Gn then

e(Gn)6 1
12n

2 + o(n2):

(b) If K6 * Gn then

e(Gn)6 1
6n
2 + o(n2):

On the other hand; for every p¿2;

(c) There is a sequence of graphs (Gn) not containing K2p; with �p(Gn) = o(n); for
which

e(Gn)¿ 1
8n
2 + o(n2): (5)

Problem 17: Is it true that �3(Gn) = o(n) and K5 * Gn imply e(Gn) = o(n2)?

Conjecture 18. The asymptotically extremal graphs for RTp(n; Kk ; o(n)) have the fol-
lowing structure:
Let k =pq+ l; (l=1; 2; : : : ; p). Then n vertices are partitioned into q+1 classes

V0; n; : : : ; Vq;n. For each pair i 6= j; {i; j} 6= {0; 1} Vi;n is almost completely joined
to Vj;n in the sense that every x ∈ Vi;n is joined to every y ∈ Vj;n with a possible
exception of o(n2) pairs xy. Further; d(V0; V1) = (l − 1)=p + o(1) (as n → ∞); and
V0; V1 are joined o(1)-regularly. Finally; e(Vi) = o(n2); i = 1; : : : ; p.

Remark 66. For graphs of this kind the optimal sizes of the classes Vi can easily be
computed. The optimal class-sizes are

|Vi|= 1
2 + (q− 1)(2− (l − 1)=p)n+ o(n) for i = 0; 1

and

|Vi|= (2− (l − 1)=p)
2 + (q− 1)(2− (l − 1)=p)n+ o(n) for 26i6q:
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From this e(Sn) can easily be calculated: e[Vi] = o(n2) can be neglected. If Sn is the
graph described in the conjecture, it is almost regular, the degrees in V2 are n− |V2|.
Hence

e(Sn) ≈ 1
2
(n− |V2|)n ≈

(
1− (2p− l + 1)

q(2p− l + 1)− l + 1

)(
n
2

)
:

Problem 19: We see from Theorem 65 that #3(K6) ∈ [ 18 ;
1
6 ]. Determine its exact

value.

Until now we were mostly interested in the o(n)-range. However, for an arbitrary
�xed f, like f(n) = nc or f(n) = n=(log n)t , etc. we may ask analogous questions:
give estimates on RTp(n; L1; : : : ; Lr; o(f(n))). We shall de�ne (similarly to
RT(n; L1; : : : ; Lr; o(n)) and #(L1; : : : ; Lr) the much more general) RTp(n; L1; : : : ;
Lr; o(f(n))) and #p;f(L1; : : : ; Lr):

De�nition 67.

#p;f(L1; : : : ; Lr) = lim
�→0

lim sup
n→∞

RTp(n; L1; : : : ; Lr; �f(n))( n
2

) :

The case of general f is investigated in [50] but here we shall restrict ourselves to
the simplest case f(n)= n. The meaning of the next theorem is that (a) # is an upper
bound for any �n → 0 (b) but it can be achieved by an appropriate �∗n → 0 and (c)
one can choose this �∗n to be ‘maximal’ in some sense.

Theorem 68 (Erdős et al. [51]). For any k1; : : : ; kr for f(n) = n; for any �n → 0;

(a) Let (Sn) be an external graph sequence for RTp(n; Kk1 ; : : : ; Kkr ; �nn). Then

lim sup
n→∞

e(Sn)( n
2

) 6#p;f(Kk1 ; : : : ; Kkr ): (6)

(b) There exists an �∗n → 0 for which on the left-hand side of (6) the limit exists and

lim
n→∞

e(Sn)( n
2

) = #p;f(Kk1 ; : : : ; Kkr ): (7)

(c) For every �n → 0 with �n¿�∗n the same — namely; (7) — holds.

Here f(n)=n means that we consider the case �p(Gn)=o(n). We restrict ourselves
to complete graphs, and assert the existence of the limit which we do not know in the
general case!
Some further results of [51] assert that in the general case there are asymptotically

extremal graph sequences of fairly simple structure, where ‘simple’ means that the
structure depends on n weakly. This is a weak generalization of the Erdős–Stone–
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Simonovits theorem (from ordinary extremal graph theory) [64,71]. Formally, the re-
sults of [51] assert that in many cases ‘there exists a matrix A for which the optimal
matrix graph sequence (A(n)) is asymptotically extremal’ for the Ramsey–Tur�an prob-
lem considered by us. Here the optimal matrix graph sequences — in some sense —
generalize the Tur�an graphs, while the so called matrix graphs generalize the complete
t-partite graphs (see also [40,132]). We refer the reader to [51], since the explanation
of the notion of optimal matrix graph sequences would require some further important
but too technical de�nitions.
The isoperimetric inequality behind Theorem 65(c): As we explained, proving the

lower bound on RT(n; K4; o(n)) Bollob�as and Erdős used an ‘isoperimetric’ theorem.
The lower bound (5) is a generalization of the Bollob�as–Erdős result. So it is natural
to use a generalization of the original isoperimetric inequality. This generalization was
conjectured by Erdős and proved by Bollob�as.
We need the following de�nition.

De�nition 69. For k¿2 de�ne the kth packing constant 17 of a set A in a metric space
by

dk(A) = sup
x1 ;:::;xk∈A

min
i¡j

�(xi; xj):

A spherical cap is the intersection of an h-dimensional unit sphere Sh and a
halfspace �.

Theorem 70 (Bollob�as [13]). Let A be a nonempty subset of the h-dimensional unit
sphere Sh of outer measure �∗(A) 18 and let C be a spherical cap of the same
measure. Then dk(A)¿dk(C) for every k¿2.

Below, whenever we speak of ‘measure’, we shall always consider relative measure
which is the measure of the set on the sphere Sh divided by the measure of the whole
sphere.
Denote by �= �p the diameter of a p-simplex. (�2 = 2; �3 =

√
3; : : :)

Corollary 71 (Erdős et al. [51]). Let the integer p and two small constants � and
�¿ 0 be �xed. Then for h¿h0(p; �; �); if A is a measurable subset of Sh of relative
measure ¿�; then there exist p points x1; : : : ; xp ∈ A so that all d(xi; xj)¿�p − �.

This is what we needed to get the lower bound (5).

17 k-diameter in [13].
18 In applications we use only ‘nice sets’ but Bollob�as formulated his result in this generality. The reader
can replace ‘outer measure’ by ‘measure’.
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8. Application of Tur�an’s theorem

8.1. Application to geometry and to metric spaces

We have already described in the Introduction, how Tur�an [149], setting out from an
observation of Erdős [34] initiated the systematic application of Tur�an-type extremal
results in geometry, analysis, general metric space [150–152], etc.
Tur�an’s basic observation was as follows:
Given n points in the space (or in any bounded metric space), for every c¿ 0 we

can de�ne a graph G(c) by joining the points P and Q i� �(P;Q)¿c. By establishing
some appropriate geometric facts, we may ensure that G(c) contains no complete p=
p(c)-graph. Hence we know (by Tur�an’s theorem) that the number of pairs (P;Q)
with �(P;Q)¿c cannot be too large. Assume that we apply this method with many
constant c1¿c2¿ · · ·¿ck ¿ 0. If f(x) is a monotone decreasing function and we are
interested in∑

f(�(Pi; Pj))

then we may obtain lower bounds on this expression by replacing all the distances
between ci and ci+1 by ci. The ‘only’ problem to be solved is:
How to choose the constants c1¿c2¿ · · ·¿ck ¿ · · ·¿ 0 to get the best results?
This was the point, where the packing constants came in:
Let M be a metric space, and let F be a family of �nite subsets of M each

of which has diameter at most c, for some �xed constant c. Typical examples
are

(i) the family of all �nite subsets with diameter at most c of a closed set D⊆M;
(ii) the family of all subsets of a bounded set D⊆M.
We are interested in the distribution of distances �(Pj; Pj) for an n-element set

{P1; : : : ; Pn} ∈ F. In characterizing these distributions, we �nd that the ‘packing
constants’ (De�nition 69) are very useful. The kth packing constant is

dk = sup
{Q1 ;:::;Qk}∈F

min
i 6=j
�(Qi; Qj):

Clearly, if there are at least k + 1 di�erent points in M, then for the kth packing
constant dk+16dk . If M is a bounded subset of the m-dimensional Euclidean space
Rm, then dk → 0. Such constants (depending largely on the geometric situation) are
called packing constants. Their investigation goes back at least to a dispute between
Newton and Gregory [73,151].
Observe that, by the de�nition of dk , if {P1; : : : ; Pn} ∈ F and if Gn is the graph

de�ned on the vertex set V ={P1; : : : ; Pn} by joining Pi and Pj by an edge if and only
if �(Pi; Pj)¿dk+1, then Gn contains no complete subgraph Kk+1. Applying Tur�an’s
theorem to this Gn we obtain a slightly simpli�ed version of Tur�an’s distance distri-
bution theorem [149].
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Theorem 72. For any {P1; : : : ; Pn} ∈ F; the number of distances �(Pi; Pj)6dk+1 is
at least

1
2k
n(n− k):

Under some quite natural additional conditions, Theorem 72 becomes sharp.
It is not worth giving a detailed description of the results obtained this way, since

the Introduction of [54] does it.
In the next part we shall regard the applications of Tur�an’s graph theorem to the

distribution of distances in metric spaces. Using the distance-distribution results Tur�an,
S�os [138], and later Erdős et al. [54–56], could give estimates on certain integrals.

8.2. The dual problem

De�nition 73 (kth covering constant). Given a metric space M, the kth covering con-
stant ck(M) is de�ned as the in�mum of those r for which there exist k points
P1; : : : ; Pk and r-balls B(Pi; r) around them so that

M=
k⋃
i=1

B(Pi; r):

An equivalent formulation is

ck := inf
(P1 ;:::;Pk )

sup
Q

min
i=1;:::; k

�(Q; Pi);

where Q ∈M; Pi ∈M.

Theorem 74 (Sos [138]). If A = {P1; : : : ; Pn} is a point set in the plane, having kth
covering constant ck ; then at least

e(n; k):=(k − 1)(n− 1) +
[
n− k + 2

2

]

of the distances �(Pi; Pj); (16i6j6n) satisfy �(Pi; Pj)¿ck .

The result is sharp, the proof follows from a theorem of Erdős and Leo Moser [58]
on k-universal graphs:

Theorem 75 (Erdős–Moser). If Gn is a graph of order n with the property that to
every k-vertex subset X ⊆V (Gn) there is an x ∈ V (Gn) joined to all the vertices of
X then

e(Gn)¿(k − 1)(n− 1) +
[
n− k + 2

2

]
:
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8.3. Embeddability

Assume that we are given n points in a metric space with their distances and we
wish to decide if they can be embedded into a low-dimensional Euclidean space.

Proposition 76 (Erdős, Meir, S�os and Tur�an [54]). If P1; : : : ; Pn are n points in a met-
ric space (M; �) and max �(Pi; Pj)61 and if

�(Pi; Pj)¿

√
k

k + 2

for more than (k=(2k + 2))n2 pairs (i; j); then this point-set cannot be embedded
into Rk .

It is known (see below) that in Rk for the case when F is the family of sets of
diameter at most 1, then

d1 = d2 = · · ·= dk+1 = 1 (8)

and

dk+2 =

√
k

k + 2
(9)

if k is even and

dk+2 =

√
k2 + 2k − 1
k2 + 4k + 3

if k is odd. The second expression is the smaller! Clearly, (8) and the above estimates
of dk are obtained by putting dk=2e+1 points into the vertices of a dk=2e-dimensional
simplex and the remaining bk=2c + 1 points into the vertices of another simplex in
an orthogonal plane. (The related results come from Sch�onberg [121] Sch�utte, Seidel
[122], etc. and one can �nd a simple and elementary proof of this geometric fact in a
note of B�ar�any with a related more general conjecture [9].)
The above proposition can be stated as follows: if we have too many distances larger

than the above dk+2 then — by Tur�an’s theorem — we have a set of k + 2 points
having pairwise distances ¿

√
k=(2k + 2)¿dk+2, and this shows that we cannot embed

even these k + 2 points into Rk . The positive feature of applying Tur�an’s theorem is
that to check this distance-distribution takes only ( n2 ) trivial steps while checking the
existence of those k + 2 points with pairwise large distances takes more steps.

8.4. Chromatic number of geometric graphs

There is a large area of combinatorial geometry, where extremal graph results
can well be applied. Instead of going into details we mention just one sub�eld and refer
the reader to the Handbood of Combinatorics [60] and to the book of Pach and
Agarwal [114].
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(i) The topic we wish to mention here is embedding graphs into low-dimensional
Euclidean spaces so that the adjacent vertices be at unit distances in the space. One of
the papers to be mentioned in this �eld was that of Erdős, Meir, S�os, Tur�an [53]. In
[53] the following (not too di�cult) assertion is proved:

Theorem 77. If G is a d-chromatic graph then it can be embedded into R2d so that
if two vertices are adjacent then the representing points have distance 1.

The proof idea is that regard in R2d d circles of radii 1=
√
2 around the origin, in

pairwise orthogonal planes, say C1; : : : ; Cd; and put the vertices of the ith color class
of G onto the ith circle Ci, for i=1; : : : ; d.
(ii) The minimum dimension d for which G can be embedded into Rd so that the

edges join vertices of distance 1 is the dimension of the graph. 19

(iii) For each graph G we can also ask its faithful dimension. This is the minimum
dimension d for which G can be embedded into Rd so that x and y are joined in the
graph if and only if their distance is 1 in the space. (The faithful dimension can be
much larger than the ordinary dimension, e.g., the dimension of bipartite graphs is at
most 4 and their faithful dimension can be arbitrary large.)
(iv) It would be interesting to know the chromatic number of Rd, i.e. of the (in�nite)

graph the vertices of which are the points of Rd and two vertices (points) are joined
if their distance is 1. This problem can easily be transformed into a question on �nite
graphs, using the de Bruijn–Erdős theorem. Larman and Rogers [101] proved that this
chromatic number is smaller than (3 + o(1))d and much later Frankl and Wilson [78]
proved that it is at least (1− o(1)) · 1:2d.
(v) Another related paper on some geometric dimension of a graph G where the

extremal graph theoretical approach is used is an Erdős–Simonovits paper [65]. Here
the essential chromatic number of Rd is de�ned. This equals to t if in any graph (Gn)
embedded into Rd one can delete o(n2) edges (as n→ ∞) so that the resulting graph
has chromatic number 6t (in sense of (ii)).
There are many problems and results on application of extremal graph theory in

geometry also in the paper of Erdős [41].

8.5. Applications in analysis

There are many quantities in analysis depending on distance-distributions in a set.
Energy integrals are among them. Some other quantities occur in connection with the
theory of analytic functions, conformal mappings and so on. Such quantities are the
‘capacity’ of a plane set, and the conformal radius, among others. In this section —
for the sake of brevity — we shall skip the de�nitions, and refer the reader to Chapter
7 of the book of Goluzin, available both in Russian and English [83,84].

19 Here two vertices can have distance 1 even if they are not joined!
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8.5.1. Trans�nite diameter, capacity
In the typical applications of Tur�an’s theorem Tur�an, and later Erdős, Meir, S�os and

Tur�an in [54–56] used to assume some regularity conditions which sometimes are not
really needed (only for the sharpness) but are natural in the applications. Here are the
conditions assumed in [54]:
Let (X; �) be a complete metric space and F be a family of point sets in it, satisfying

1. There exists an R such that all the sets of F are in B(0; R).
2. If S ∈ F and S1⊂ S in �nite, then S1 ∈ F.
3. If S ∈ F is �nite and P ∈ F; then for any �¿ 0 there is a P1 ∈ X so that
P1 6= P; �(P; P1)¡� and S ∪ {P1} ∈ F.

Theorem 78. Suppose that B is a bounded closed set in the plane and that @B
belongs to an F-family of sets satisfying Conditions 1–3 and having packing
constants dk . If

∑
k

1
k2
log

1
dk

diverges, then the capacity of B is 0.

Perhaps a heuristic explanation of this theorem is that in some sense a set is small
if its capacity is 0, in some other sense it is small if its packing constants tend to 0
fast and this theorem connects the two quantities.

8.5.2. Outer conformal radius

Theorem 79. If B is a bounded closed continuum whose complement is simply con-
nected and @B belongs to an F-family of sets satisfying 1; 2; 3 and having packing
constants dk ; then the outer conformal radius r = r(B) satis�es

r(B)6
∞∏
k=2

(dk)1=k(k−1):

8.5.3. Potential theory
Let f(r) be a decreasing function, and let �(x; y) be the distance between x and y

in Rm. If D is a closed subset of Rm and � is a mass distribution (or measure) on D,
then the generalized potential is de�ned by

I(f) =
∫
D×D

f(�(x; y)) d�x d�y:

(In classical physics, f(r) =−log r for m= 2; and f(r) = r2−m for m= 3; 4; : : : :)
Theorem 72 immediately implies the following result (see [149]):
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Theorem 80 (Tur�an’s Potential Theorem). If D⊂Rm is compact, if dk is its kth
packing constant, and if f(r)¿d0 for r ∈ (0; d2); then

I(f)¿�(D)
∑
k¿2

f(dk)
k2 − k :

8.6. Lipschitz functions

Theorem 81 (Erdős, Meir, T. S�os and Tur�an [56]). Let F denote the set of functions
in C[0; 1] satisfying f(0) = 0 and |f(x1)−f(x2)|6|x1 − x2| whenever 06x16x261.
||f − g|| is the usual maximum di�erence norm. For k = 1; 2; : : : ; if n¿ 2k an
f1; : : : ; fn ∈ F then the number of pairs (fi; fj) with ||fi − fj||62=k is at least

n2

2k
− n
2
:

This estimate is sharp.

A corollary of this theorem is that the probability that randomly chosen f; g ∈ F

satisfy ||f − g||62=k is at least 1=2k−1; for k = 2; : : : .

8.7. Triangle functionals

Up to now we have considered only binary functionals. Of course, the same methods
can be applied to value-distributions of geometric data depending on more than two
points. Thus e.g., we may ask

Problem 20: Given a set of points, x1; : : : ; xn in a metric space M,

• If for any triple (xixjxk) the perimeter of the triangle is at most 1, how many
triples (xixjxk) may have perimeter larger than t?

• If for any triple (xixjxk) the area of the triangle is at most 1, how many triangles
(xixjxk) may have area larger than t?

Obviously, these are related to extremal hypergraph problems (on 3-uniform hyper-
graphs). For related results see [55].

8.8. Probability theory

Katona started applying extremal graph theory to probability theory [88–91,94]. The
germ of these application was the observation that if we have two random variables �
and �, then — knowing their distribution and applying Tur�an-type extremal graph the-
ory — we can derive estimates on the probabilities P(�+�¡x), i.e. on the distribution
of the sum. One typical result in this �eld was
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Theorem 82 (Katona’s Inequality [88]). If � and � are vector-valued independent ran-
dom variables with the same distribution; then

P(|�+ �|¿x)¿ 1
2P(|�|¿x)2:

Katona and later Sidorenko have published several results on this topic [125–130].
We do not give a detailed description of the topic here, primarily since Katona gave

an excellent survey of the �eld in [94].
One could say that the probability applications are mostly application of geometry,

with one new feature: instead of describing the distribution of pairwise distances be-
tween geometric points one has to describe length distribution of certain vector sums.
If e.g., we want to prove that Theorem 82 holds in an arbitrary Hilbert space, then we
have to use

Lemma 83. For any three vectors a1; a2; a3 ∈ R3 of length at least 1 we may choose
two appropriate ones; ai and aj for which |ai + aj|¿ 1.

This implies that for an arbitrary Hilbert space H,

Lemma 84. Let a1; : : : ; an ∈ H with ||ai||¿x and let the vertices of a graph Gn
be these vectors and the edges be the pairs (ai; aj) for which ||ai + aj||¿x. Then
K3 6⊂Gn.

Then — using the last lemma and Tur�an’s theorem — one can show relatively easily
that

Theorem 85 (Katona). Let �; � be independent random variables with values from a
Hilbert space H which have m di�erent values of equal probabilities. Then

P(|�+ �|¿x) ¿ P(||�+ �||¿x; ||�||¿x; ||�||¿x) ¿ 1
2P(|�|¿x)2:

If �; � have a continuous range, they can have arbitrary many values but if the
probability space is ‘atom’-free 20 then the previous argument can be modi�ed to give
the same result.
The general case, when atoms are also allowed, can also be handled. But we skip

here the discussion of this case.

8.8.1. Related extremal graph results
Some new types of extremal problems occur in these applications. To be precise, the

results motivated by these applications often have occurred earlier but without being

20 i.e. each set A of positive probability can be partitioned into two measurable subsets of strictly smaller
measure.
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applied to other �elds.

(a) One has to extend Tur�an type extremal problems to continuous versions.
(b) Sidorenko proved that to prove certain kind of probability distribution results

is equivalent with solving extremal graph problems with colored vertices. Here
we �x a set of colors, say, �1; : : : ; �‘ and the graph Gn will be replaced by a
vertex-colored graph: Gn⊆K‘(n1; : : : ; n‘) where these class-sizes are treated as
arbitrary but known, �xed parameters. The forbidden graphs also L ∈ L are
vertex-colored (where vertices of the same color are allowed to be joined). We
allow Li⊆Gn in most positions, but we exclude Li⊆Gn so that the vertices of the
jth color of Li are in the jth color-class of Gn; (j=1; : : : ; ‘). Such problems were
earlier investigated in [133], in connection with hypergraph extremal problems.

(c) In some other applications weighted extremal graph problems have to be solved.
One such case was discussed in Section 2.7.

8.9. Applications in number theory

Extremal graph theory has several roots, and the two most important ones among
them are Tur�an’s paper [147] and the ‘Tomsk’ paper of Erdős [33].
Erdős often arrived at graph problems from the applications in other �elds. A detailed

description of this ‘story’ can be found in the ‘preface’-paper of Szekeres included in
the Art of Counting [141]. Here we are interested in the birth of extremal graph theory.
In 1938 Erdős published a paper [33] which has several interesting features.

• It contains the �rst extremal graph problem Erdős dealt with, namely, the problem
of excluding the C4 and (not too surprisingly) it contains the �rst application of
‘�nite geometrical’ methods to provide lower bounds for extremal graph problems.

• This paper seems to be the �rst example where Erdős used extremal graph theory
in other �elds, namely, in number theory.

A few years ago Erdős, A. S�arkőzy and T. S�os [63] returned to this �eld, solved
some further problems from combinatorial number theory, using extremal graph theory,
then G. S�arkőzy and Győri proved some related extremal graph results (Győri’s results
[87] completely settled the related graph theoretical question) and earlier Faudree,
Simonovits, de Caen and Sz�ekely had some related results.
A somewhat more detailed description of the problem can be found in [63,87].
This connection of number theory and combinatorics was the topic of S�os’ lecture

at the SIAM meeting, Toronto, 1998 [140].

9. Further open problems

There are various intriguing open problems in connection with the above theorems.
Some of them are mentioned in the corresponding sections, some further ones are listed
below.
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9.1. Ramsey–Tur�an problems

The problem below is motivated by the Bollob�as–Erdős construction. Assume that
g is �xed. Here we are looking for two graphs, Fm and Hm, with girth ¿g and
�(Gm)=�(Hm)=o(m) and try to join them by 1

2m
2−o(m2) edges so that the resulting

G2m contains no K4. Observe that in the Bollob�as–Erdős construction we have large
odd girth but our graphs are full with large complete bipartite graphs K2(p;p). (It
would be nice also to have Fm = Hm.)
Of course, we have constructions for graphs with large girth Hm but we do not know

if they can be joined densely without getting a K4.

Problem 21 (Generalized BE-graphs). Can one construct a graph similar to the Bol-
lob�as–Erdős graph; where the girth of the components is arbitrary large: Find a
graph G2m with two vertex-disjoint subgraphs Fm and Hm; so that g(Fm); g(Hm)¿g
and �(Fm) = o(n) and �(Hm) = o(n) and e(G2m) = 1

8 (2m)
2 and K4 * G2m.

A solution to this problem would (almost) imply that it is the Arboricity which
determines the asymptotical value of RT(n; L; o(n)) (see Section 2.6).
The following problem seems to be very di�cult and may be raised in several

di�erent settings but we cannot solve it even in the simplest case. We formulate the
problem here for graphs and many colors.

Problem 22 (The spectrum). Let RT(n; L1; : : : ; Lr; m) be the set of integers e for
which there exists a graph Gn with �(Gn)¡m; and e(Gn)=e which can be edge-colored
in r colors so that the ith color contains no Li; for i=1; : : : ; r. Is this set an interval?

As it is remarked e.g. in [52], this problem may be relevant in several di�erent
cases, e.g. in investigating size-Ramsey numbers.

Problem 23: Determine #(Kq; K3).

Perhaps the following is true.

Construction 86: Let t = R(q; s). Color Tn; t by RED and BLUE canonically (with
respect to the classes of Tn; t) — i.e. the coloring of an edge depends only on the
classes it joins — so that the colored graph should contain neither RED Kq; nor
BLUE Ks. Put into each class of this graph a RED Erdős graph Fm of Construction
16. The resulting graph Un=U (n; q; s) will contain neither a RED K2q−1; nor BLUE
Ks. Clearly;

e(Un)¿e(Tn; t)

and

�(Un) = o(n):
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Hence

RT (n; 2q− 1; s; o(n))¿e(Tn; t):

Conjecture 24. U (n; q; 3) of Construction 86 is extremal for RT(n; 2q− 1; 3; o(n)).

9.2. Kp-independence problems

Various open problems are stated in [51]. Here we list some of them. The �rst two
of these are the simplest special cases of Conjecture 18 where we got stuck.

Problem 25: Determine #3(K11) and #3(K14).

According to Conjecture 18, #3(K11) = 11
32 and #3(K14) =

8
21 .

Problem 26: Is there a �nite algorithm to �nd the limit

#p(L) = lim
�→0

lim
n→∞

RTp(n; L; �n)( n
2

) ?

We have proved in [50] that there is a �nite algorithm to �nd #2(L1; : : : ; Lr) if the
sample graphs Li are complete graphs. A paper of Brown, Erdős and Simonovits [24]
shows that for the digraph extremal problems without parallel arcs (which seems to be
very near to the Tur�an–Ramsey problems) there is an algorithmic solution, though far
from being trivial. What is the situation in case of #p(L1; : : : ; Lr)?

9.3. Related Ramsey problems

Ramsey–Tur�an problems often lead to interesting and di�cult questions in Ramsey
theory. Erdős and S�os formulated several conjectures on the Ramsey function [67]. We
mention here two of them.

Conjecture 27.

lim
n→∞

R(3; 3; n)
R(3; n)

→ ∞ (10)

and

lim
n→∞(R(3; n+ 1)− (R(3; n))→ ∞: (11)

It is very surprising that (10) and (11), which seem trivial at �rst sight, cause serious
di�culties.

Conjecture 28.

lim
n→∞

R(3; 3; n)
n2

→ ∞
and perhaps R(3; 3; n)¿n3−� for every �¿ 0 if n¿n0(�).
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[55] P. Erdős, A. Meir, V.T. S�os, P. Tur�an, On some applications of graph theory II, Studies in Pure
Mathematics (presented to R. Rado), Academic Press, London, 1971, pp. 89–99. Math Reviews:
44#3887; Zentralblatt: 218.52005.
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[70] P. Erdős, J. Spencer, Probability methods in combinatorics, Academic Press and Publishing House of
Hungarian Academic Science, New York, 1974.
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