ON A PROBLEM OF K. ZARANKIEWI(Z
BY
T. KOVARI, V.T. 68 axp P. TURAN (BUDAPEST)

1. K, Zarankiewiez?) has raised the following interesting question.
Let A, be a matrix with # rows and » columns consisting exclusivaly
of 0’z and 15 as elements, and § an integer with

(1.1) i n—1,.

Now the question of Zarankiowicz requires & proof of the asser-
tion that if 4, contains “a sufficiently large” number of 1%, then the
matrix contains a minor of order j consisting exclusively of 1's. More
exaetly, what i3 the minimal nurber k (n) of 1% in 4, so that the exis-
tence of a minor of order § consisting merely of 1's can be asswred?
5. Hartman, J. Mycielski and O. Ryli-Nardzewski have proved
that

(1.2) et by () < e,

with numerical ¢, and ¢,%). In what follows we shall show that

. leam
(1.3) lim -1-1i—2?= :
and also the inequality
{1.4) ky(n)<< 14 24 [#**],

where [¢] as usual denotes the integral part of x39).
Hence, for j=2, Zaranlkiewicz's question iz at least agymptotically
solved. Moreover we shall show for every § of {1.1} the inequality

E-;J:_
(1.5) ks ()< 1 jn —|—[{;.-‘—~1}|’a:. 7 ]

which containg (1.4) as the special ease j=2. In the sequel the righi-
-hand part of this inequality will be denoted by kf(n).

) Colloguium Mathematicum 2 (1951}, p. 301, problemn 101,
. *) Communieated to the Polislh Matlhomatical Bocioty, Wroctaw Section, No-
vember 20, 1851, Heo this fascicle, p. 84.

% As we learned, after giving the manuseript to the Redaction, from a letker
of P. Evdis, he has found independently most of tho reenlty of this papar,
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2. If wis “smaell"” compared to §, the estimation [1.5) can be itrivial,
i.e. I (m)=nt Thiz iz certainly not the case when

A
(2.1) i=8, nzf .

Tn that ease, namely, we have
a\i
f}ﬁl}(l -+ -5) 3
farther
2\ gt 3
'”-}?""3*:-‘(1%——.) ) (1+T)§f=r:n=f
!
and thus

1A=l gl =l 13-l
K (n)<14dn 4 (-1 n 7 {(F) ! +fﬂ(—u] +jin 1

2
].-|——:-i_—) < nk,

L 1 ¥-—1
e T
VARt <l
j E

It iz very probable that also for j=3

. Rn
lim —H-1

Bk 0 -
broe =3

axists; some remarks about that we shall find in Seetion 6. The proof
of (1.5) will be given in Section 4, that of (1.3) in Bection 5.

Ag we can see from. the proofs, the results eould be generalised to
the case when the matrix 4, is replaced by a matrix B, , with », rows
and n, columns and we want to ensure the existence of a submatrix
with j, rows and j, columns consisting exclusively of 1's. ‘We restrict
ourselves hare to the original problem of Zarankiewicz; nevertheless we
whall treat in Section 7 the case n,=p(p+1),me=p"ji=7f1=2 (p prime},
in which cage the ereet minimum can be determined.

3. Before turning to the proof we shall give an application of (1.5)
to & graph-theorefical gquestion. Given = different points in the three-
-space Py, P,,...,P,, constituting the vertices of the graph P of order =,
we connect some pairs Py, Py (i#Ek) by a life, called an edge of P,in guch
a way that two edges can have no other common point than a vertex.
A part of the edges together with their end-points form a subgraph
of P; a subgraph is called complete if all pairs of its vertices are connec-
ted by edges. A graph is called of even owrouit or, ghortly, even if its ver-
tices ean be divided into two classes, 4 and B in such a way that no

‘t
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two vertices of the same clags are connected. A graph P’ is a satwrated
even graph if, moreover, any two vertices talken out of the classes A4
and B are connected in P’ by an edge. A saturated oven graph P’ is
called of the dype (i,1) if the classes 4 and B contain exactly i and I vor-
tices respectively., Now fhers is & frend in this theory®} to infer from
the number of edges 28 mueh a3 poesasible about the structure of the graph,
Thus emerges the guestion, what number of adges existing in a graph P
of order n can ensurs the existence of a #turated even subgraph of the
type (§,§) if 2j<n? Denoting the minimal number of edges by H;(n) we
deduce immediately from (1.5) the estimation

{3.1) Hy(n)<hf(n) where h;’{ﬂ}=1+[%k?(ﬂ]],

i. ¢. the existence of hl(n) edges in a graph of order » already cnsures
the existence of a saturated even graph of the type (§,4). Namely lot
a matrix 4,= (a;), correspond to our graph P of order = with the
vertices P,,P,,...,P, 80 that

gy =1} (1=1,2,...,n)
and for ik
1 if P, and P, are connected,
(3-2) “m=a‘“={ ¢ if not.

If there are at least Af(n) edges in P, it follows that the matrix

has at least
' 2&;{ﬂ]=z([k’{”}]+1) S B {”‘" =% (n)

1’s ‘and thus owing fo (1.5} a minor of order j consisting merely of 1%s.
If the indices of the rows and columns of this minor ars

(3.3) fgyfg)en iyl respectively Mgy Mgy eeay My,

then owing to the structure of the matrix none of the row indices coin-
cides with a colnmn-index in (3.3). But this means that oach of tho
vertices P; , P; ,. Pf ig connectad with the vertices Py y P, me
Omifting the edgﬂ-a uf the form 15 Pi and P, F (if thtay ﬁxwt at all)
we already obfain the required aatumt&d wan graph of type (f,}).

It is very probable that also the quantity & (n) is near to the best
possible. By a similar reasoning we could golve the analogous problem of
the existence of a saturated even graph of type {8,§) with {-+j<<a but
Wo do not go into details.

%) For an sosount of this see P. Turdn, On the theory of graphs, this fascicle,
p. 1830, -

i



C0MMTUNIGCATIONSGS 53

r— i R iy

Let ug call a-i:tanﬁo:f:u to o rather gurprizing fact. We have seen that

—1
the presemce of about # 7 edges in & graph of order n already ensures
the existenee of a saturated even subgraph of the type (j,j), i.e. of
a subgraph of order 2j with at least j* edges. Now we may compare
this rosult with the solution of the question whai is the minimal number
of adges in a graph of order » which ensures the existence of a complete
subgraph of order 27, i.e. of a subgraph of order 2§ with §(2§—1)}~2;2 edges.
This problem was rolved mors than ten years ago®) with the following
regult: the erec! minimum is

25—-2

3 (2j— N“‘m+()

where » is unigvely determined by
n=¢ mod (2j—1} (0=Sr<2§—2).
I. e, the minimal number is now of order #% which is mueh larger than

21
order m T .

4. Now we turn to the proof of the inequality (1.5). In other words,
we have to prove that if the number of 1'% in A4, is greater than
- 1K1
(-1 jut (-1 T =0,

then 4, contains certainly & minor of order j consisting merely of 1's.
To show this we meed Holder's inagquality in the following form:
For the positive numbers by,b,,...,by and integer 11 woe have

L L\t
{4‘2} EbE;Li_l{Ebﬂ) T
: Fasl wem]
Now let the integers %q,ke,...,k, be such that with the above U
(4.3) ey t-Ep .. R >T
and

k i for w=1,2,...,M
[4“1] r;? = ] 1
ko<j for w=m=l,...,n

36)-506) 5 5 e

Then we have

B Sea %) in which also the question ia settled when we mquira the existence
of 2 complete subgraph of order (2j—1).
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Applying the inequality (4.2) with
b= j, by=K,— L= m,

wa ohiain

(5> { 5w

= p=l

]:f L
R By BRI +Fn.J\:=--MIU il

rrl

Taking into account (4.1), we get

2 [k '? o wo_ H)
{4.5) Z(j)}j_!{{j 1}’91 }—{j—l};—!}{jml}(j .

e |

Now let &, bo the number of 1’s in the »th row of 4, . The 1's in

[ : s
the first row determine cxactly ( ;) combinations of the column-indices
1 LMy Myl o< My B0 That
g, = By, 7 v Ry, =1.

The same applies to all rows. Hence the total number of such combina-

S(4):

1o 1
i
But owing to (4.3) and {4.5) we get in this way moere than (j—1) ( ) com-
1
hinationg. This means, however, that there is ai least one combination
lgij<d, ... <L<n

of columm-indices which ocours in at least j rows, say in the d,-th,d,-th, .
vy A-th. Hence the elements

“##R,. (v=1,2,...,5; p=1,%,...,j)
form a minor of order j consisting merely of 1’s.

5. Next we turn fo the proof of (1.3). This can be done if wo assu-
me & matrix 4, with 0 and 1 as elements, with ‘“nearly” n¥? Il-elements,
not having a minor of order 2 of 1's. Qwing to the fact that the quotient of
the consecutive primes tends to 1, it is obviously sufficient to prove
our asserion (1.3) for n-values of the form '

[5.1} - ?‘IZP’,
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where p runs over the prime numbers. We shall show indeed that in

this case one can construct & matrix A, with exactly p?=n¥t 1% g0

that it econtaing no minor of the second order consisting merely of 1’s.
For the proof of cur assertion wo define the symbol (n) by

(5.2) RE=(n ) modp (0= {n><p)

and consider the following combinations of the elements 1,2,...,p%,
taking p of them at a time. If

{F.3) t<=a<p, h=b=<p
are integers fhen we foxm the combinations
(5.4) == (kp+ (e +bky+1} (k=0,1,2,...,(p—1)).

The number of thesy combinatioas is obviously p*. The essential pro-
perty (property A) of these combinaticns is that any two of them have
at most one elememt in common. To show this we consider the combi-
nations J, and J.z. Owing to the construction, each of the intervalg

l<ngp, p<n<slp, ..., (@P—l)p<ngp®

containg exactly one element of evory J,-combination. Hence the com-
mon elements of J, and J, ave only those for which

at-4-bk=¢--dk modp.

But owing to (3.3) we have 0<{b<p, 0<d<Ip, which means that apart
from the case h=d there is exactly one common element of J,; and Jgy.
If b=d, astc then Ju and J,z have no element in common.

With the aid of this system of combinations wo construet our ma-
trix in the following way. We arrange thom in a certain way; then, with
a changed notation we denofe tham by

JDJS!”*JJm
and lot
Jr-={".!r:i'lrr"-?ipr} '-r.rﬁl:'z'rh-?pl}-
Then the r~th row of our matrix consists of 1's at the i -th, fg-th, ... yip-th

place and of 0's at the other places. Then the number of 1's in this ma-
trix A, iz obwviously

p;=ﬂl-..=.

and we assert that A, does not confain a rminor of geoond order con-
sisting imerely of 1%. Indeed if it did and the 1's were taken from the
i-th and k-th rows, then the combinations J; and J, womld have fwo
common clements at least, against the property 4. Hence (1.3} iz also
provod.
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6. It iz vory probable that the estimation (1.5) approaches the best

possible also for §>2. More exactly, an inequality of the form
=1
(8.1} kyn)>en 7
probably holds also for §>>2 where ¢ depends only wpon j ab most. A
proof of this assertion would follow if it could be proved for all m-va-
Tues of the form -
'illm-pf‘,

P prime, We ghould need the existence of a system B of ;r’ combinations
formed from elements 1,2,...,9", taken »'~* at & time, with the following
property; no system (iy,ig,...,4;) With

1<l <tp< . <H<P

can ocenr in mare than (5—1) combinationg of the system B. For j=3
thai problem had been solved in Section B.

7. As wea did mention at the end of Section 2 there iz one case when
the eraet minimum can be determined. It iz the case, when

(7.1) =p{p+1), Ny=p" hi=ja=2,
Tn this case, denoting the minimyam by &, p(ny,mg), we adsert thab
(7.2] bz o(pt+p,p%) =pp+1)+1.

To show this we first coastruct a matrix with p*+p rows and p* co-
lumng containing p*(p41) 1's and we minor of the gecond order consisting
of 1's. In order to do this, to the system of combinations J,, described
in (5.3) and (5.4) for »=0,1,...,(p—1) we add further combinations:

{7.8) I',='I::I"_',T'.-'—'—I-‘rjl {k=1:27“-:?—"]‘;

this enlarged system of combination: we call D-system and thon con-
struet a matrix ¢ with p*4-p rows and p* columns as given in Seetion 5.
Then the number of 1's iz exactly p®(p--1) and since evidently no two
combinations of the D-gystem contain a common ambo, no minor of
e second order can exist in ¢ consisting of 1%s. So this part of ounr
agsertion is already established. To prove the remaining part we wssert
further that no zero in ¢ can be replaced by 1 without vielating its
property of not containing a minor of the second order consisting of
1's. This will be shown simply by eounting all ambos in D, taking in-
to secount that no two of them are identical. Rince sach combination
confaing exactly p elements, the total number of ambos is

:&{p+1}(§) =(”;),
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indeed the number of all ambog of p® elements; thus if we changed
& zero in O to & 1, the total number of ambos would. be greater than

. :
P*} ¢ ¢ the corresponding matrix would confain a minor of the second

2 ¥

order congisting of 1’s. With thiz remark our proof can be completed
ag follows. As befors, we have oaly to show that if the integers

Y, P nkp{pﬂp

are subjected to
lE1}

E k,=HK>pp+1),

Pt

P

then

But thiz follows evidently from the fact that if

PlE+1)
(7.4) 2 L=pp+1)

=1

then

) e+l I‘, : w41} 3'
wn 5 (5] 5 (3]

26

and the quantity

i. e,

2N i
w3 (¢)=(5)

(1, integers),

with the restrietion (7.4) assumes its minimum for L=h=...=ypn=0:

q. e, 4.



