

[image: cover]

 GALLIUM

 Programming languages, types, compilation and proofs

 2018 Project-Team Activity Report
	

 Research centre:
 Paris

 Field: Algorithmics, Programming, Software and Architecture
Theme: Proofs and Verification

 Computer Science and Digital Science:

 	A1.1.1. - Multicore, Manycore

 	A1.1.3. - Memory models

 	A2.1. - Programming Languages

 	A2.1.1. - Semantics of programming languages

 	A2.1.3. - Object-oriented programming

 	A2.1.4. - Functional programming

 	A2.1.6. - Concurrent programming

 	A2.1.11. - Proof languages

 	A2.2. - Compilation

 	A2.2.1. - Static analysis

 	A2.2.2. - Memory models

 	A2.2.4. - Parallel architectures

 	A2.2.5. - Run-time systems

 	A2.4. - Formal method for verification, reliability, certification

 	A2.4.1. - Analysis

 	A2.4.3. - Proofs

 	A2.5.4. - Software Maintenance & Evolution

 	A7.1.2. - Parallel algorithms

 	A7.2. - Logic in Computer Science

 	A7.2.2. - Automated Theorem Proving

 	A7.2.3. - Interactive Theorem Proving

 Other Research Topics and Application Domains:

 	B5.2.3. - Aviation

 	B6.1. - Software industry

 	B6.6. - Embedded systems

 	B9.5.1. - Computer science

 Project-Team Gallium

 Team, Visitors, External Collaborators

 Overall Objectives	Research at Gallium

 Research Program	Programming languages: design, formalization, implementation
	Type systems
	Compilation
	Interface with formal methods

 Application Domains	High-assurance software
	Software security
	Processing of complex structured data
	Rapid development
	Teaching programming

 Highlights of the Year

 New Software and Platforms	Compcert
	Diy
	Menhir
	OCaml
	PASL
	ZENON
	OPAM Builder
	TLAPS
	CFML
	ldrgen

 New Results	Formal verification of compilers and static analyzers
	Language design and type systems
	Shared-memory concurrency
	The OCaml language and system
	Software specification and verification

 Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Partnerships and Cooperations	National Initiatives
	European Initiatives
	International Initiatives

 Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Bibliography

 	
 Major publications

 	
 Publications of the year

 	
 References in notes

 Creation of the Project-Team: 2006 May 01
Section: Team, Visitors, External Collaborators
Research Scientists
Xavier Leroy [Team leader, Inria, Senior Researcher, until Oct 2018; Collège de France, Prof, since Nov 2018]
Umut Acar [Inria, Advanced Research Position, until Apr 2018]
Damien Doligez [Inria, Researcher]
Ioannis Filippidis [Inria, Starting Research Position, since Oct 2018]
Fabrice Le Fessant [Inria, Researcher, until Jan 2018]
Jean-Marie Madiot [Inria, Researcher]
Luc Maranget [Inria, Researcher]
Michel Mauny [Inria, Senior Researcher]
François Pottier [Inria, Senior Researcher, HDR]
Mike Rainey [Inria, Starting Research Position, until Feb 2018]
Didier Rémy [Inria, Senior Researcher, HDR]
Post-Doctoral Fellow
Gergö Barany [Inria, until Aug 2018]
PhD Students
Vitaly Aksenov [Inria, until Aug 2018]
Armaël Guéneau [Université Paris Diderot]
Glen Mével [Inria, since Nov 2018]
Naomi Testard [Inria]
Thomas Williams [ENS Paris, until Aug 2018]
Technical staff
Sébastien Hinderer [Inria]
Interns
Lucas Baudin [ENS Paris, from Mar 2018 to Aug 2018]
Nathanaël Courant [Inria, from Mar 2018 to Jul 2018]
Glen Mével [ENS Cachan, from Mar 2018 to Aug 2018]
Simon Colin [École Polytechnique, from April 2018 to July 2018]
Émilie Guermeur [Inria, from May 2018 to Jul 2018]
Sébastien Michelland [Inria, from Jun 2018 to Jul 2018]
Administrative Assistant
Laurence Bourcier [Inria]

 Overall Objectives

 	Overall Objectives	Research at Gallium

 Section:
 Overall Objectives

 Research at Gallium

 The research conducted in the Gallium group aims at improving the
safety, reliability and security of software through advances in
programming languages and formal verification of programs. Our work
is centered on the design, formalization and implementation of
functional programming languages, with particular emphasis on type
systems and type inference, formal verification of compilers, and
interactions between programming and program proof. The OCaml language
and the CompCert verified C compiler embody many of our research
results. Our work spans the whole spectrum from theoretical
foundations and formal semantics to applications to real-world
problems.

 Research Program

 	Research Program	Programming languages: design, formalization, implementation
	Type systems
	Compilation
	Interface with formal methods

 Section:
 Research Program

 Programming languages: design, formalization, implementation

 Like all languages, programming languages are the media by which
thoughts (software designs) are communicated (development),
acted upon (program execution), and reasoned upon (validation).
The choice of adequate programming languages has a tremendous impact
on software quality. By “adequate”, we mean in particular the
following four aspects of programming languages:

 	
 Safety. The programming language must not expose
error-prone low-level operations (explicit memory deallocation,
unchecked array access, etc) to programmers. Further, it should
provide constructs for describing data structures, inserting
assertions, and expressing invariants within programs. The consistency
of these declarations and assertions should be verified through
compile-time verification (e.g. static type-checking) and run-time
checks.

 	
 Expressiveness. A programming language should manipulate
as directly as possible the concepts and entities of the application
domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A
typical example of a language feature that increases expressiveness is
pattern matching for examination of structured data (as in symbolic
programming) and of semi-structured data (as in XML processing).
Carried to the extreme, the search for expressiveness leads to
domain-specific languages, customized for a specific application area.

 	
 Modularity and compositionality. The complexity of large
software systems makes it impossible to design and develop them as
one, monolithic program. Software decomposition (into semi-independent
components) and software composition (of existing or
independently-developed components) are therefore crucial. Again,
this modular approach can be applied to any programming language,
given sufficient fortitude by the programmers, but is much facilitated
by adequate linguistic support. In particular, reflecting notions of
modularity and software components in the programming language enables
compile-time checking of correctness conditions such as type
correctness at component boundaries.

 	
 Formal semantics. A programming language should fully and
formally specify the behaviours of programs using mathematical
semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods
(program proof, model checking) to programs.

 Our research work in language design and implementation centers on
the statically-typed functional programming paradigm,
which scores high on safety, expressiveness and formal semantics,
complemented with full imperative features and objects for additional
expressiveness, and modules and classes for compositionality. The
OCaml language and system embodies many of our earlier
results in this area [37].
Through collaborations, we also gained experience with several
domain-specific languages based on a functional core, including
distributed programming (JoCaml), XML processing (XDuce, CDuce),
reactive functional programming, and hardware modeling.

 Section:
 Research Program

 Type systems

 Type systems [39] are a very effective way to improve
programming language reliability. By grouping the data manipulated by
the program into classes called types, and ensuring that operations
are never applied to types over which they are not defined
(e.g. accessing an integer as if it were an array, or calling a string
as if it were a function), a tremendous number of programming errors
can be detected and avoided, ranging from the trivial (misspelled
identifier) to the fairly subtle (violation of data structure
invariants). These restrictions are also very effective at thwarting
basic attacks on security vulnerabilities such as buffer overflows.

 The enforcement of such typing restrictions is called type-checking,
and can be performed either dynamically (through run-time type tests)
or statically (at compile-time, through static program analysis). We
favor static type-checking, as it catches bugs earlier and even in
rarely-executed parts of the program, but note that not all type
constraints can be checked statically if static type-checking is to
remain decidable (i.e. not degenerate into full program proof).
Therefore, all typed languages combine static and dynamic
type-checking in various proportions.

 Static type-checking amounts to an automatic proof of
partial correctness of the programs that pass the compiler. The two
key words here are partial, since only type safety guarantees are
established, not full correctness; and automatic, since the
proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source).
Static type-checking can therefore be viewed as the poor man's formal
methods: the guarantees it gives are much weaker than full formal
verification, but it is much more acceptable to the general population
of programmers.

 Type systems and language design.

 Unlike most other uses of static program analysis, static
type-checking rejects programs that it cannot prove safe.
Consequently, the type system is an integral part of the language
design, as it determines which programs are acceptable and which are
not. Modern typed languages go one step further: most of the language
design is determined by the type structure (type algebra and
typing rules) of the language and intended application area. This is
apparent, for instance, in the XDuce and CDuce domain-specific
languages for XML transformations [35], [32],
whose design is driven by the idea of regular expression types that
enforce DTDs at compile-time. For this reason, research on type
systems – their design, their proof of semantic correctness (type
safety), the development and proof of associated type-checking and
inference algorithms – plays a large and central role in the field of
programming language research, as evidenced by the huge number of type
systems papers in conferences such as Principles of Programming
Languages.

 Polymorphism in type systems.

 There exists a fundamental tension in the field of type systems that
drives much of the research in this area. On the one hand, the desire
to catch as many programming errors as possible leads to type systems
that reject more programs, by enforcing fine distinctions between
related data structures (say, sorted arrays and general arrays). The
downside is that code reuse becomes harder: conceptually identical
operations must be implemented several times (say, copying a general array
and a sorted array). On the other hand, the desire to support code
reuse and to increase expressiveness leads to type
systems that accept more programs, by assigning a common type to
broadly similar objects (for instance, the Object type of all class
instances in Java). The downside is a loss of precision in static
typing, requiring more dynamic type checks (downcasts in Java) and
catching fewer bugs at compile-time.

 Polymorphic type systems offer a way out of this dilemma by
combining precise, descriptive types (to catch more errors statically)
with the ability to abstract over their differences in pieces of
reusable, generic code that is concerned only with their commonalities.
The paradigmatic example is parametric polymorphism, which is
at the heart of all typed functional programming
languages. Many forms of polymorphic typing have been studied since
then. Taking examples from our group, the work of Rémy, Vouillon and
Garrigue on row polymorphism [42], integrated
in OCaml, extended the benefits of this approach (reusable
code with no loss of typing precision) to object-oriented programming,
extensible records and extensible variants. Another example is the
work by Pottier on subtype polymorphism, using a constraint-based
formulation of the type system [40].
Finally, the notion of “coercion polymorphism” proposed by Cretin and
Rémy[5] combines and generalizes both parametric
and subtyping polymorphism.

 Type inference.

 Another crucial issue in type systems research is the issue of type
inference: how many type annotations must be provided by the
programmer, and how many can be inferred (reconstructed) automatically
by the type-checker? Too many annotations make the language more
verbose and bother the programmer with unnecessary details. Too few
annotations make type-checking undecidable, possibly requiring
heuristics, which is unsatisfactory.
OCaml requires explicit type information at data type
declarations and at component interfaces, but infers all
other types.

 In order to be predictable, a type inference algorithm must be complete. That
is, it must not find one, but all ways of filling in the missing
type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances
of a single, principal solution.

 Maybe surprisingly, the strong requirements – such as the existence of
principal types – that are imposed on type systems by the desire to perform
type inference sometimes lead to better designs. An illustration of this is
row variables. The development of row variables was prompted by type inference
for operations on records. Indeed, previous approaches were based on subtyping
and did not easily support type inference. Row variables have proved simpler
than structural subtyping and more adequate for type-checking record update,
record extension, and objects.

 Type inference encourages abstraction and code reuse. A programmer's
understanding of his own program is often initially limited to a particular
context, where types are more specific than strictly required. Type inference
can reveal the additional generality, which allows making the code more
abstract and thus more reuseable.

 Section:
 Research Program

 Compilation

 Compilation is the automatic translation of high-level programming
languages, understandable by humans, to lower-level languages, often
executable directly by hardware. It is an essential step in the
efficient execution, and therefore in the adoption, of high-level
languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has
had considerable influence on the design of both. Compilers have
also attracted considerable research interest as the oldest instance
of symbolic processing on computers.

 Compilation has been the topic of much research work in the last 40
years, focusing mostly on high-performance execution
(“optimization”) of low-level languages such as Fortran and C. Two
major results came out of these efforts: one is a superb body of
performance optimization algorithms, techniques and methodologies; the
other is the whole field of static program analysis, which now serves
not only to increase performance but also to increase reliability,
through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group
focuses on a less investigated topic: compiler certification.

 Formal verification of compiler correctness.

 While the algorithmic aspects of compilation (termination and
complexity) have been well studied, its semantic correctness – the
fact that the compiler preserves the meaning of programs – is
generally taken for granted. In other terms, the correctness of
compilers is generally established only through testing. This is
adequate for compiling low-assurance software, themselves validated
only by testing: what is tested is the executable code produced by the
compiler, therefore compiler bugs are detected along with application
bugs. This is not adequate for high-assurance, critical software
which must be validated using formal methods: what is formally
verified is the source code of the application; bugs in the compiler
used to turn the source into the final executable can invalidate the
guarantees so painfully obtained by formal verification of the source.

 To establish strong guarantees that the compiler can be trusted not
to change the behavior of the program, it is necessary to apply formal
methods to the compiler itself. Several approaches in this direction
have been investigated, including translation validation,
proof-carrying code, and type-preserving compilation. The approach
that we currently investigate, called compiler verification,
applies program proof techniques to the compiler itself, seen as a
program in particular, and use a theorem prover (the Coq system) to
prove that the generated code is observationally equivalent to the
source code. Besides its potential impact on the critical software
industry, this line of work is also scientifically fertile: it
improves our semantic understanding of compiler intermediate
languages, static analyses and code transformations.

 Section:
 Research Program

 Interface with formal methods

 Formal methods collectively refer to the mathematical specification of
software or hardware systems and to the verification of these systems
against these specifications using computer assistance: model
checkers, theorem provers, program analyzers, etc. Despite their
costs, formal methods are gaining acceptance in the critical software
industry, as they are the only way to reach the required levels of
software assurance.

 In contrast with several other Inria projects, our research objectives
are not fully centered around formal methods. However, our research
intersects formal methods in the following two areas, mostly related
to program proofs using proof assistants and theorem provers.

 Software-proof codesign

 The current industrial practice is to write programs first, then
formally verify them later, often at huge costs. In contrast, we
advocate a codesign approach where the program and its proof of
correctness are developed in interaction, and we are interested in
developing ways and means to facilitate this approach. One
possibility that we currently investigate is to extend functional
programming languages such as OCaml with the ability to state
logical invariants over data structures and pre- and post-conditions
over functions, and interface with automatic or interactive provers to
verify that these specifications are satisfied. Another approach that
we practice is to start with a proof assistant such as Coq and improve
its capabilities for programming directly within Coq.

 Mechanized specifications and proofs for
programming language components

 We emphasize mathematical specifications and proofs of correctness for
key language components such as semantics, type systems, type
inference algorithms, compilers and static analyzers. These
components are getting so large that machine assistance becomes
necessary to conduct these mathematical investigations. We have
already mentioned using proof assistants to verify compiler
correctness. We are also interested in using them to specify and
reason about semantics and type systems. These efforts are part of a
more general research topic that is gaining importance: the formal
verification of the tools that participate in the construction and
certification of high-assurance software.

 Application Domains

 	Application Domains	High-assurance software
	Software security
	Processing of complex structured data
	Rapid development
	Teaching programming

 Section:
 Application Domains

 High-assurance software

 A large part of our work on programming languages and tools focuses on
improving the reliability of software. Functional programming,
program proof, and static type-checking contribute significantly to
this goal.

 Because of its proximity with mathematical specifications,
pure functional programming is well suited to program proof.
Moreover, functional programming languages such as OCaml are eminently
suitable to develop the code generators and verification tools that
participate in the construction and qualification of high-assurance
software. Examples include Esterel Technologies's KCG 6 code
generator, the Astrée static analyzer, the
Caduceus/Jessie program prover, and the Frama-C platform. Our own
work on compiler verification combines these two aspects of functional
programming: writing a compiler in a pure functional language and
mechanically proving its correctness.

 Static typing detects programming errors early, prevents a number
of common sources of program crashes (null dereferences, out-of bound
array accesses, etc), and helps tremendously to enforce the integrity
of data structures. Judicious uses of generalized abstract data types
(GADTs), phantom types, type abstraction and other encapsulation
mechanisms also allow static type checking to enforce program
invariants.

 Section:
 Application Domains

 Software security

 Static typing is also highly effective at preventing a number of
common security attacks, such as buffer overflows, stack smashing, and
executing network data as if it were code. Applications developed in
a language such as OCaml are therefore inherently more secure than
those developed in unsafe languages such as C.

 The methods used in designing type systems and establishing their
soundness can also deliver static analyses that automatically verify
some security policies. Two examples from our past work include Java
bytecode verification [38] and enforcement of
data confidentiality through type-based inference of information flow
and noninterference properties [41].

 Section:
 Application Domains

 Processing of complex structured data

 Like most functional languages, OCaml is very well suited to expressing
processing and transformations of complex, structured data. It
provides concise, high-level declarations for data structures; a very
expressive pattern-matching mechanism to destructure data; and
compile-time exhaustiveness tests.
Therefore, OCaml is an excellent match for applications involving significant
amounts of symbolic processing: compilers, program analyzers and
theorem provers, but also (and less obviously) distributed
collaborative applications, advanced Web applications, financial
modeling tools, etc.

 Section:
 Application Domains

 Rapid development

 Static typing is often criticized as being verbose (due to the additional
type declarations required) and inflexible (due to, for instance, class
hierarchies that must be fixed in advance). Its combination with type
inference, as in the OCaml language, substantially diminishes the
importance of these problems: type inference allows programs to be
initially written with few or no type declarations; moreover, the
OCaml approach to object-oriented programming completely separates the
class inheritance hierarchy from the type compatibility relation.
Therefore, the OCaml language is highly suitable for fast
prototyping and the gradual evolution of software prototypes into
final applications, as advocated by the popular “extreme
programming” methodology.

 Section:
 Application Domains

 Teaching programming

 Our work on the OCaml language family has an impact on the teaching of
programming. OCaml is one of the programming
languages selected by the French Ministry of Education
for teaching Computer Science in classes
préparatoires scientifiques. OCaml is also widely used for
teaching advanced programming in engineering schools, colleges and
universities in France, the USA, and Japan.

 Highlights of the Year

 	
 Highlights of the Year

 Section:
 Highlights of the Year

 Highlights of the Year

 Awards

 In 2018,
Xavier Leroy received the “Grand prix”
jointly awarded by Inria and Académie des sciences.

 Gergö Barany received the Best Paper Award for the paper “Finding Missed
Compiler Optimizations by Differential Testing” [19]
at the 27th International Conference on Compiler Construction (CC 2018).

 New Software and Platforms

 	New Software and Platforms	Compcert
	Diy
	Menhir
	OCaml
	PASL
	ZENON
	OPAM Builder
	TLAPS
	CFML
	ldrgen

 Section:
 New Software and Platforms

 Compcert

 The CompCert formally-verified C compiler

 Keywords: Compilers - Formal methods - Deductive program verification - C - Coq

 Functional Description: CompCert is a compiler for the C programming language. Its intended use is the compilation of life-critical and mission-critical software written in C and meeting high levels of assurance. It accepts most of the ISO C 99 language, with some exceptions and a few extensions. It produces machine code for the ARM, PowerPC, RISC-V, and x86 architectures. What sets CompCert C apart from any other production compiler, is that it is formally verified to be exempt from miscompilation issues, using machine-assisted mathematical proofs (the Coq proof assistant). In other words, the executable code it produces is proved to behave exactly as specified by the semantics of the source C program. This level of confidence in the correctness of the compilation process is unprecedented and contributes to meeting the highest levels of software assurance. In particular, using the CompCert C compiler is a natural complement to applying formal verification techniques (static analysis, program proof, model checking) at the source code level: the correctness proof of CompCert C guarantees that all safety properties verified on the source code automatically hold as well for the generated executable.

 Release Functional Description: Novelties include a formally-verified type checker for CompCert C, a more careful modeling of pointer comparisons against the null pointer, algorithmic improvements in the handling of deeply nested struct and union types, much better ABI compatibility for passing composite values, support for GCC-style extended inline asm, and more complete generation of DWARF debugging information (contributed by AbsInt).

 	
 Participants: Xavier Leroy, Sandrine Blazy, Jacques-Henri Jourdan, Sylvie Boldo and Guillaume Melquiond

 	
 Partner: AbsInt Angewandte Informatik GmbH

 	
 Contact: Xavier Leroy

 	
 URL: http://compcert.inria.fr/

 Section:
 New Software and Platforms

 Diy

 Do It Yourself

 Keyword: Parallelism

 Functional Description: The diy suite provides a set of tools for testing shared memory models: the litmus tool for running tests on hardware, various generators for producing tests from concise specifications, and herd, a memory model simulator. Tests are small programs written in x86, Power or ARM assembler that can thus be generated from concise specification, run on hardware, or simulated on top of memory models. Test results can be handled and compared using additional tools.

 	
 Participants: Jade Alglave and Luc Maranget

 	
 Partner: University College London UK

 	
 Contact: Luc Maranget

 	
 URL: http://diy.inria.fr/

 Section:
 New Software and Platforms

 Menhir

 Keywords: Compilation - Context-free grammars - Parsing

 Functional Description: Menhir is a LR(1) parser generator for the OCaml programming language. That is, Menhir compiles LR(1) grammar specifications down to OCaml code. Menhir was designed and implemented by François Pottier and Yann Régis-Gianas.

 	
 Contact: François Pottier

 	
 Publications: A Simple, Possibly Correct LR Parser for C11 -
Reachability and Error Diagnosis in LR(1) Parsers

 Section:
 New Software and Platforms

 OCaml

 Keywords: Functional programming - Static typing - Compilation

 Functional Description: The OCaml language is a functional programming language that combines safety with expressiveness through the use of a precise and flexible type system with automatic type inference. The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine code for x86, ARM, PowerPC and System Z), a debugger, a documentation generator, a compilation manager, a package manager, and many libraries contributed by the user community.

 	
 Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer, Alain Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop and Leo White

 	
 Contact: Damien Doligez

 	
 URL: https://ocaml.org/

 Section:
 New Software and Platforms

 PASL

 Keyword: Parallel computing

 Functional Description: PASL is a C++ library for writing parallel programs targeting the broadly available multicore computers. The library provides a high level interface and can still guarantee very good efficiency and performance, primarily due to its scheduling and automatic granularity control mechanisms.

 	
 Participants: Arthur Charguéraud, Michael Rainey and Umut Acar

 	
 Contact: Michael Rainey

 	
 URL: http://deepsea.inria.fr/pasl/

 Section:
 New Software and Platforms

 ZENON

 Functional Description: Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input, it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying results on standard automatic-proving benchmarks.

 Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof assistant), and also to be retargeted to output scripts for different frameworks (for example, Isabelle and Dedukti).

 	
 Author: Damien Doligez

 	
 Contact: Damien Doligez

 	
 URL: http://zenon-prover.org/

 Section:
 New Software and Platforms

 OPAM Builder

 Keywords: Ocaml - Continuous integration - Opam

 Functional Description: OPAM Builder checks in real-time the installability on a computer of all packages after any modification of the repository. To achieve this result, it uses smart mechanisms to compute incremental differencies between package updates, to be able to reuse cached compilations, and switch from a quadratic complexity to a linear complexity.

 	
 Partner: OCamlPro

 	
 Contact: Fabrice Le Fessant

 	
 URL: http://github.com/OCamlPro/opam-builder

 Section:
 New Software and Platforms

 TLAPS

 TLA+ proof system

 Keyword: Proof assistant

 Functional Description: TLAPS is a platform for developing and mechanically verifying proofs about TLA+
specifications. The TLA+ proof language is hierarchical and explicit, allowing a
user to decompose the overall proof into proof steps that can be checked
independently. TLAPS consists of a proof manager that interprets the proof
language and generates a collection of proof obligations that are sent to
backend verifiers. The current backends include the tableau-based prover Zenon
for first-order logic, Isabelle/TLA+, an encoding of TLA+ set theory as an
object logic in the logical framework Isabelle, an SMT backend designed for use
with any SMT-lib compatible solver, and an interface to a decision procedure for
propositional temporal logic.

 News Of The Year: Ioannis Filippidis joined the development team in November 2018 and started designing and implementing support for reasoning about TLA+'s enabled construct.

 	
 Participants: Damien Doligez, Stephan Merz and IOANNIS FILIPPIDIS

 	
 Contact: Stephan Merz

 	
 URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html

 Section:
 New Software and Platforms

 CFML

 Interactive program verification using characteristic formulae

 Keywords: Coq - Software Verification - Deductive program verification - Separation Logic

 Functional Description: The CFML tool supports the verification of OCaml programs through interactive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a specification. They may also be used to formally establish bounds on the asymptotic complexity of the code. The tool is made of two parts: on the one hand, a characteristic formula generator implemented as an OCaml program that parses OCaml code and produces Coq formulae, and, on the other hand, a Coq library that provides notations and tactics for manipulating characteristic formulae interactively in Coq.

 	
 Participants: Arthur Charguéraud, Armaël Guéneau and François Pottier

 	
 Contact: Arthur Charguéraud

 	
 URL: http://www.chargueraud.org/softs/cfml/

 Section:
 New Software and Platforms

 ldrgen

 Liveness-driven random C code generator

 Keywords: Code generation - Randomized algorithms - Static program analysis

 Functional Description: The ldrgen program is a generator of C code: On every call it generates a new random C function and prints it to the standard output. The generator is "liveness-driven", which means that it tries to avoid generating dead code: All the computations it generates are (in a certain, limited sense) actually used to compute the function's return value. This is achieved by generating the program backwards, in combination with a simultaneous liveness analysis that guides the random generator's choices.

 	
 Participant: Gergö Barany

 	
 Contact: Gergö Barany

 	
 Publication: Liveness-Driven Random Program Generation

 	
 URL: https://github.com/gergo-/ldrgen

 New Results

 	New Results	Formal verification of compilers and static analyzers
	Language design and type systems
	Shared-memory concurrency
	The OCaml language and system
	Software specification and verification

 Section:
 New Results

 Formal verification of compilers and static analyzers

 The CompCert formally-verified compiler

 Participants :
	Xavier Leroy, Daniel Kästner [AbsInt GmbH] , Michael Schmidt [AbsInt GmbH] , Bernhard Schommer [AbsInt GmbH] .

 In the context of our work on compiler verification (see
section 3.3.1), since 2005, we have been developing and
formally verifying a moderately-optimizing compiler for a large subset
of the C programming language, generating assembly code for the
ARM, PowerPC, RISC-V and x86 architectures [9].
This compiler comprises a back-end part, translating the Cminor
intermediate language to PowerPC assembly and reusable for source
languages other than C [8], and a
front-end translating the CompCert C subset of C to Cminor.
The compiler is mostly written within the specification language of
the Coq proof assistant, from which Coq's extraction facility
generates executable OCaml code. The compiler comes with a 100000-line
machine-checked Coq proof of semantic preservation establishing that
the generated assembly code executes exactly as prescribed by the
semantics of the source C program.

 This year, we improved the CompCert C compiler in several directions:

 	
 A new built-in function, __builtin_ais_annot makes it
easy to transfer annotations (also known as flow facts) written at
the source code level in AbsInt's aiS annotation language all the
way down to the level of the generated machine code. The
aiT static analyzer for Worst-Case Execution Times, which operates
at the machine code level, can then take advantage of these
annotations to produce better WCET estimates.

 	
 In preparation for a qualification with respect to industry
standards for avionics software, conformance with the ISO C 1999 and
ISO C 2011 standards was improved, with the addition of many
diagnostics required by the standards.

 	
 Performance of the generated code was slightly improved via
changes to the heuristics for function inlining and for instruction
selection.

 	
 The semantic modeling of external function calls was made more
precise, reflecting the fact that these functions can destroy some
registers and some stack locations.

 We released three versions of CompCert incorporating these
improvements: version 3.2 in January 2018, version 3.3 in May 2018,
and version 3.4 in September 2018.

 Two papers on CompCert were presented at conferences. The first
paper, with Daniel Kästner as lead author, was presented at the 2018
ERTS congress [22]. It describes the use of
CompCert to compile software for nuclear power plant equipment
developed by MTU Friedrichshafen, and the required certification of
CompCert according to the IEC 60880 regulations for the nuclear
industry. The second paper, with Bernhard Schommer as lead author,
was presented at the 2018 WCET workshop [23].
It describes the __builtin_ais_annot source-level annotation
mechanism mentioned above and its uses to help WCET analysis.

 Verified code generation in the polyhedral model

 Participants :
	Nathanaël Courant, Xavier Leroy.

 The polyhedral model is a high-level intermediate representation for
loop nests iterating over arrays and matrices, as found in numerical
code. It supports a great many loop optimizations (fusion, splitting,
interchange, blocking, etc) in a uniform, mathematically-elegant
manner.

 Nathanaël Courant, as part of his MPRI Master's internship and under
Xavier Leroy's supervision, developed a Coq formalization of the
polyhedral model. He then implemented and proved correct in Coq a code
generator that produces efficient sequential code from an optimized
polyhedral representation. Code generation is a delicate part of
polyhedral compilation, involving complex, error-prone algorithms.
Nathanaël Courant's verified code generator includes the major
algorithms from Cédric Bastoul's reference paper [31].
The Coq specifications and proofs are available at
https://github.com/Ekdohibs/PolyGen.

 Testing compiler optimizations

 Participant :
	Gergö Barany.

 Compilers should be correct, but they should ideally also generate machine
code that is as efficient as possible. Gergö Barany continued work on
testing the quality of the generated code.

 In a differential testing approach, one generates random C programs, compiles
them with different compilers, then compares the generated code using a
custom binary analysis tool. This tool finds missed optimizations by
comparing criteria such as the number of instructions, the number of reads
from the stack (for comparing the quality of register spilling), or the
numbers of various other classes of instructions affected by optimizations
of interest.

 The system has found previously unreported missing optimizations in the GCC,
Clang, and CompCert compilers. An article [19] was
presented at the 27th International Conference on Compiler Construction (CC
2018), where it was honored with the Best Paper Award.

 A verified model of register aliasing in CompCert

 Participants :
	Gergö Barany, Xavier Leroy.

 Some CPU architectures such as ARM feature register aliasing: Each of its
64-bit floating-point registers can also be accessed as two separate 32-bit
halves. Modifying a superregister changes (invalidates) the data stored in
subregisters and vice versa, but this behavior was not yet modeled in
CompCert's semantics.

 We continued work on re-engineering much of CompCert's semantic model of the
register file and of the call stack. Rather than simple mappings of locations
to values, the register file and the stack are now modeled more realistically
as blocks of memory containing bytes that represent fragments of values. In
this way, we can verify a semantic model in which a 64-bit register or stack
slot may contain either a single 64-bit value or a pair of two unrelated
32-bit values. This ongoing work was presented at the workshop on Syntax and
Semantics of Low-Level Languages (LOLA 2018) [25].

 Section:
 New Results

 Language design and type systems

 Refactoring with ornaments in ML

 Participants :
	Thomas Williams, Lucas Baudin, Didier Rémy.

 Thomas Williams, Lucas Baudin, and Didier Rémy have been working on
refactoring and other transformations of ML programs based on mixed
ornamentation and disornamentation. Ornaments have been introduced as a way of
describing changes in data type definitions that can reorganize or add pieces
of data. After a new data structure has been described as an ornament of an
older one, the functions that operate on the bare structure can be partially
or sometimes totally lifted into functions that operate on the ornamented
structure.

 Williams and Rémy improved the formalisation of the lifting framework: using
ornament inference, an ML program is first elaborated into a generic program,
which can be seen as a template for all possible liftings of the original
program. The generic program is defined in a superset of ML. It can then be
instantiated with specific ornaments, and simplified back to an ML program.
Williams and Rémy studied the semantics of this intermediate language and used
it to prove the correctness of the lifting, using logical relations
techniques. This work has been presented at POPL
2018 [12]. More technical details appear in a research
report [43].

 Lucas Baudin and Dider Rémy also studied the inverse transformation,
disornamentation, which allows removing pieces of information from a data
structure and adjusting the code accordingly. They showed that the framework
of ornamentation can also be used to allow mixed ornamentation and
disornamentation transformations. They also designed a new patch language to
describe in a more robust manner how the code must be modified during such
transformations. This enables a new class of applications, such as maintaining
two views of a data structure in sync. For example, the location information
in an abstract syntax tree, which is used to report error messages but
obfuscates the code, can be projected away, leading to a simpler version of
the code, which can then be modified and often automatically reornamented into
the richer version of the code with locations.
Disonamentation has been presented by Lucas Baudin at the ML 2018 workshop.
Ornamentation, including mixed disornamentation, has also been presented at
the MSFP 2018 workshop in Oxford.

 A small prototype with ornamentation has been written by Thomas Williams and
extended with disornamentation by Lucas Baudin. Thomas Williams has also
started developing a new version of the prototype that will handle most of
the OCaml language.

 Section:
 New Results

 Shared-memory concurrency

 The Linux Kernel Memory Model

 Participants :
	Luc Maranget, Jade Alglave [University College London & ARM Ltd] , Paul Mckenney [IBM Corporation] , Andrea Parri [Sant'Anna School of Advanced Studies, Pisa, Italy] , Alan Stern [Harvard University] .

 Modern multi-core and multi-processor computers do not follow the intuitive
“sequential consistency” model that would define a concurrent execution as
the interleaving of the executions of its constituent threads and that would
command instantaneous writes to the shared memory. This situation is due both
to in-core optimisations such as speculative and out-of-order execution of
instructions, and to the presence of sophisticated (and cooperating) caching
devices between processors and memory. Luc Maranget is taking part in an
international research effort to define the semantics of the computers of the
multi-core era, and more generally of shared-memory parallel devices or
languages, with a clear initial focus on devices.

 This year saw a publication on languages in an international conference. A
multi-year effort to define a weak memory model for the Linux Kernel has
yielded a scholarly paper [18] presented at the
Architectural Support for Programming Languages and Operating Systems
(ASPLOS) conference in March 2018. The article describes a formal model, the
Linux Kernel Memory Model (LKMM), which defines how Linux kernel
programs are supposed to behave. The model, a cat model, can be
simulated using the herd simulator, allowing
programmers to experiment and develop intuitions. The model was tested against
hardware and refined in consultation with Linux maintainers. Finally, the
ASPLOS paper formalizes the fundamental law of the Read-Copy-Update
synchronization mechanism and proves that one of its implementations
satisfies this law. It is worth noting that the LKMM is now part of the Linux
kernel source (in the tools/) section). Luc Maranget and his
co-authors are the official maintainers of this document.

 The ARMv8 and RISC-V memory model

 Participants :
	Will Deacon [ARM Ltd] , Luc Maranget, Jade Alglave [University College London & ARM Ltd] .

 Jade Alglave and Luc Maranget are working on a mixed-size version of the ARMv8
memory model. This model builds on the aarch64.cat model authored
last year by Will Deacon (ARM Ltd). This ongoing work is subject to IP
restrictions which we hope to lift next year.

 Luc Maranget is an individual member of the memory model group of the RISC-V
consortium (https://riscv.org/). Version V2.3 of the User-Level ISA
Specification is now complete and should be released soon. This version
features the first occurrence of a detailed memory model expressed in English,
as well as its transliteration in Cat authored by Luc Maranget.

 Work on diy

 Participant :
	Luc Maranget.

 This year, new synchronisation primitives were added to the Linux kernel
memory model;
ARMv8 atomic instructions were added; and more.

 A more significant improvement is the introduction of mixed-size
accesses. The tools can now handle a new view of memory, where memory is made
up of elementary cells (typically bytes) that can be read or written as
groups of contiguous cells (typically up to quadwords of 8 bytes). This
preliminary work paves the way to the simulation of more elaborate memory
models.

 Unifying axiomatic and operational weak memory models

 Participants :
	Jean-Marie Madiot, Jade Alglave [University College London & ARM Ltd] , Simon Castellan [Imperial College London] .

 Modern multi-processors optimize the running speed of programs using a variety
of techniques, including caching, instruction reordering, and branch
speculation. While those techniques are perfectly invisible to sequential
programs, such is not the case for concurrent programs that execute several
threads and share memory: threads do not share at every point in time a single
consistent view of memory. A weak memory model offers only weak
consistency guarantees when reasoning about the permitted behaviors of a
program. Until now, there have been two kinds of such models, based on
different mathematical foundations: axiomatic models and operational models.

 Axiomatic models explicitly represent the dependencies between the program and
memory actions. These models are convenient for causal reasoning about
programs. They are also well-suited to the simulation and testing of
hardware microprocessors.

 Operational models represent program states directly, thus can be used to
reason on programs: program logics become applicable, and the reasoning behind
nondeterministic behavior is much clearer. This makes them preferable for
reasoning about software.

 Jean-Marie Madiot has been collaborating with weak memory model expert Jade
Alglave and concurrent game semantics researcher Simon Castellan in order to
unify these styles, in a way that attempts to combine the best of both
approaches. The first results are a formalisation of TSO-style architectures
using partial-order techniques similar to the ones used in game semantics, and
a proof of a stronger-than-state-of-art “data-race freedom” theorem:
well-synchronised programs can assume a strong memory model. These results
have been submitted for publication.

 This is a first step towards tractable verification of concurrent programs,
combining software verification using concurrent program logics, in the top
layer, and hardware testing using weak memory models, in the bottom layer. Our
hope is to leave no unverified gap between software and hardware, even (and
especially) in the presence of concurrency.

 Granularity control for parallel programs

 Participants :
	Umut Acar, Vitaly Aksenov, Arthur Charguéraud, Adrien Guatto [Université Paris Diderot] , Mike Rainey, Filip Sieczkowski [University of Wrocław] .

 This year, the DeepSea team continued their work on granularity control
techniques for parallel programs.

 A first line of research is based on the use of programmer-supplied asymptotic
complexity functions, combined with runtime measurements. This work first
appeared at PPoPP 2018 [16] in the form of a brief
announcement, and was subsequently accepted for publication at PPoPP 2019 as a
full paper.

 A second line of research, known as heartbeat scheduling, is based
on instrumenting the runtime system so that parallel function calls are
initially executed as normal function calls, by pushing a frame on the
stack, and subsequently can be promoted and become independent threads.
This research has been presented at PLDI 2018
[14].

 Theory and analysis of concurrent algorithms

 Participant :
	Vitaly Aksenov.

 Vitaly Aksenov, in collaboration with Petr Kuznetsov (Télécom ParisTech) and
Anatoly Shalyto (ITMO University), proved that no wait-free linearizable
implementation of a stack using read, write, compare & swap and fetch & add
operations can be help-free. This proof corrects a mistake in an earlier proof
by Censor-Hillel et al. The result was published at the the International
Conference on Networked Systems (NETYS 2018) [17].

 Vitaly Aksenov, in collaboration with Dan Alistarh (IST Austria) and Petr
Kuznetsov (Télécom ParisTech), worked on performance prediction for
coarse-grained locking. They describe a simple model that can be used to
predict the throughput of coarse-grained lock-based algorithms. They show that
their model works well for CLH locks, and thus can be expected to work for
other popular lock designs such as TTAS or MCS. This work appeared as a brief
announcement at PODC 2018 [16].

 The aforementioned results by Vitaly Aksenov are also covered in his Ph.D. manuscript [11].

 Section:
 New Results

 The OCaml language and system

 The OCaml system

 Participants :
	Damien Doligez, Armaël Guéneau, Xavier Leroy, Luc Maranget, David Allsop [University of Cambridge] , Florian Angeletti, Frédéric Bour [Facebook] , Stephen Dolan [University of Cambridge] , Alain Frisch [Lexifi] , Jacques Garrigue [University of Nagoya] , Sébastien Hinderer, Nicolás Ojeda Bär [Lexifi] , Thomas Refis [Jane Street] , Gabriel Scherer [team Parsifal] , Mark Shinwell [Jane Street] , Leo White [Jane Street] , Jeremy Yallop [University of Cambridge] .

 This year, we released three versions of the OCaml system: versions
4.06.1 and 4.07.1 are minor releases that fix 7 and 8 issues,
respectively; version 4.07.0 is a major release that introduces many
improvements in usability and performance, and fixes about 40 issues.
The main novelties are:

 	
 The standard library modules were reorganized to appear as
sub-modules of a new Stdlib module. The purpose of this
reorganization is to facilitate the addition of new standard library
modules while minimize risks of conflicts with user modules of the
same name.

 	
 Modules Float (floating-point operations) and
Seq (sequences) were added to the standard library, taking
advantage of the new organization mentioned above.

 	
 Since 4.01, it has been possible to select a variant constructor or
record field from a sub-module that is not opened in the current
scope, if type information is available at the point of use. This
now also works for GADT constructors.

 	
 The GC now handles the accumulation of custom blocks in the minor heap
better. This solves some memory-usage issues observed in code which
allocates a large amount of small custom blocks, typically small bigarrays.

 Package management infrastructure

 Participant :
	Damien Doligez.

 This year, Damien Doligez has worked on the
opamcheck tool,
which is designed to check the compatibility of different versions of OCaml on
the whole code base of opam, OCaml's
package manager. As a by-product of this work, he has proposed numerous fixes
to the opam package repository and to its dependency graph.

 Work on the compiler's test suite and build system

 Participant :
	Sébastien Hinderer.

 In 2018, Sébastien Hinderer has worked on the OCaml compiler's test suite. More
precisely, he has finished porting over 800 tests in the compiler's test suite
so that they can be run by the tool ocamltest , developed by Sébastien
earlier. To achieve this, it has been necessary to extend both
ocamltest and the domain-specific language that is used to describe
how tests should be executed.

 In addition, Sébastien has fixed and properly documented the procedure that is
used to bootstrap the OCaml compiler. Being able to compile the compiler using
itself is an important feature: it is crucial, for instance, when the compiler
is released. In addition to fixing the bootstrap procedure, Sébastien has
introduced a way to test this procedure through continuous integration, which
guarantees that it will not be broken again in the future.

 Finally, Sébastien has continued to improve and refactor the compiler's build
system, and, most importantly, has replaced the hand-written configuration
script by an autoconf -generated one, which will be part of the
upcoming 4.08 release of OCaml. This represents an important step towards the
ability to produce cross-compilers for OCaml, which has been a long-standing
issue for the whole OCaml community.

 Optimizing OCaml for satisfiability problems

 Participants :
	Sylvain Conchon [LRI, Univ. Paris-Saclay] , Albin Coquereau [ENSTA-ParisTech] , Mohamed Iguernlala [OCamlPro] , Fabrice Le fessant [OCamlPro] , Michel Mauny.

 This work aims at improving the performance of the Alt-Ergo SMT solver, which
is implemented in OCaml. For safety reasons, and to ease reasoning about its
algorithms, the implementation of Alt-Ergo uses a functional programming style
and persistent data structures, which are sometimes less efficient than
imperative style and mutable data. Moreover, some efficient algorithms, such
as CDCL SAT solvers, are naturally expressed in an imperative style.

 Following our previous work on optimizing Alt-Ergo's built-in SAT solver, some
efforts were needed to enable the comparison of our solver with other SMT
solvers. We developed an OCaml library for parsing and type-checking SMT-LIB2.
Since Alt-Ergo natively uses a polymorphic typing discipline, and since the
community needs such advanced features, we proposed an extension of the
SMT-LIB2 syntax where functions may be polymorphic.

 The resulting new version of Alt-Ergo was presented at the 2018 SMT Workshop
in Oxford [33]. Comparisons of Alt-Ergo with other SMT solvers,
mainly developed in C++, took place during the competition that is associated
with the workshop. They showed that Alt-Ergo's performance is similar to that
of its competitors.

 Albin Coquereau's Ph.D. defense is planned for Spring 2019.

 Improvements in Menhir

 Participant :
	François Pottier.

 In 2018, the OCaml parser of the OCaml compiler
was migrated from ocamlyacc to Menhir,
at last.
François Pottier took this opportunity to partially clean up the parser,
reducing redundancy by taking advantage of Menhir's features.
In the future, we hope to continue to work on the OCaml parser
by improving the quality of its syntax error messages.

 This cleanup work was also an occasion to revisit Menhir's grammar description
language: François Pottier designed and implemented a new input syntax for
Menhir, which seems slightly more powerful and elegant than the previous
syntax.

 Section:
 New Results

 Software specification and verification

 Formal reasoning about asymptotic complexity

 Participants :
	Armaël Guéneau, Arthur Charguéraud [team Camus] , François Pottier.

 For a couple years, Armaël Guéneau, Arthur Charguéraud, François Pottier have
been investigating the use of Separation Logic, extended with Time Credits, as
an approach to the formal verification of the time complexity of OCaml
programs. In particular, Armaël has developed in Coq a theory and a set of
tactics that allow working with asymptotic complexity bounds. He has presented
the main aspects of this work at the conference ESOP 2018
[21].
Furthermore, a key part of the machinery for working with asymptotic
complexity bounds has been released as a standalone, reusable Coq library,
procrastination.
Armaël presented this library at the Coq Workshop in
July 2018 [29].

 In 2018, Armaël has worked on a more ambitious case study, namely a recent
incremental cycle detection algorithm, whose amortized complexity analysis
is nontrivial. A machine-checked proof has been completed; a paper is
in preparation.

 Time Credits and Time Receipts in Iris

 Participants :
	Glen Mével, Jacques-Henri Jourdan [CNRS] , François Pottier.

 From March to August 2018, Glen Mével did an M2 internship at Gallium, where
he was co-advised by Jacques-Henri Jourdan (CNRS) and François Pottier. Glen
extended the program logic Iris with time credits and time receipts.

 Time credits are a well-understood concept, and have been used in several
papers already by Armaël Guéneau, Arthur Charguéraud, and François Pottier.
However, because Iris is implemented and proved sound inside Coq,
extending Iris with time credits
requires a nontrivial proof,
which Glen carried out, based on a program transformation
which inserts “tick” instructions into the code.
As an application of time credits,
Glen verified inside Iris the correctness of
Okasaki's notion of “debits”,
which allows reasoning about the time complexity of programs that use thunks.

 Time receipts are a new concept, which (we showed) allows proving that certain
undesirable events, such as integer overflows, cannot occur until a very long
time has elapsed. Glen extended Iris with time receipts and proved the
soundness of this extension. As an application of time credits and receipts
together, Jacques-Henri Jourdan updated Charguéraud and Pottier's earlier
verification of the Union-Find data structure [3]
and proved that integer ranks cannot realistically overflow, even if they are
stored using only logW bits, where W is the number of bits in a machine
word.

 This work has been first submitted to POPL 2019,
then (after significant revision) re-submitted to ESOP 2019.

 Verified Interval Maps

 Participant :
	François Pottier.

 In the setting of ANR project Vocal, which aims to build a library of verified
data structures for OCaml, François Pottier carried out a formal
reconstruction of “interval maps”. An interval map, a data structure
proposed by Bonichon and Cuoq in 2010, represents a set of possible heaps,
that is, a set of mappings of integer addresses to abstract values. Interval
maps are used in the Frama-C program analysis tool. François Pottier
re-implemented this data structure in Coq and carried out a formal
verification of its main operations. This work, which represents about 4
months of work, remains unpublished at this time.
It would be desirable to publish it and to envision its integration in
Frama-C; this however requires further effort.

 Chunked Sequences

 Participants :
	Émilie Guermeur, Arthur Charguéraud, François Pottier.

 In June and July 2018, Émilie Guermeur, an undergraduate student at Carnegie
Mellon University (Pittsburgh, USA) did a 6-week internship, co-advised by
Arthur Charguéraud and François Pottier. She wrote a full-fledged OCaml
implementation of “chunked sequences”, a data structure which offers an
efficient representation of sequences of elements. This data structure exists
in two forms, a persistent form and an ephemeral (mutable) form; efficient
conversion operations are offered. François Pottier subsequently implemented a
test harness, based on afl-fuzz, which allowed us to submit Émilie's
code to intensive testing and detect and fix a few bugs. This work is not
yet published; we intend to pursue it in 2019, to publish the library and
perhaps to verify it.

 TLA+

 Participants :
	Damien Doligez, Leslie Lamport [Microsoft Research] , Ioannis Filippidis, Martin Riener [team VeriDis] , Stephan Merz [team VeriDis] .

 Damien Doligez is head of the “Tools for Proofs” team in the
Microsoft-Inria Joint Centre. The aim of this project is to
extend the TLA+ language with a formal language for hierarchical
proofs, formalizing Lamport's ideas [36].
This requires building tools to help write TLA+ specifications
and mechanically check proofs.

 Since October 2018, Ioannis Filippidis has been working on extending the TLAPS
tool to deal with proofs of temporal properties. Under some well-defined
circumstances, an occurrence of the enabled operator applied to a
formula f can be replaced by a version of f where the primed variables are
replaced by new existentially-quantified variables. The result is a
first-order formula that can be sent to one of TLAPS's first-order back-ends.
This rewriting of enabled suffices to prove a large class of liveness
properties. Ioannis has started implementing this in TLAPS.

 Bilateral Contracts and Grants with Industry

 	Bilateral Contracts and Grants with Industry	Bilateral Contracts with Industry

 Section:
 Bilateral Contracts and Grants with Industry

 Bilateral Contracts with Industry

 The Caml Consortium

 Participants :
	Damien Doligez [
 contact
] , Xavier Leroy, Michel Mauny, Didier Rémy.

 The Caml Consortium is a formal structure where industrial and
academic users of OCaml can support the development of the language and
associated tools, express their specific needs, and contribute to the
long-term stability of OCaml. Membership fees are used to fund
specific developments targeted towards industrial users. Members of
the Consortium automatically benefit from very liberal licensing
conditions on the OCaml system, allowing for instance the OCaml
compiler to be embedded within proprietary applications.

 The Consortium currently has 15 member companies:

 	
 Aesthetic Integration

 	
 Ahrefs

 	
 Be Sport

 	
 Bloomberg

 	
 CEA

 	
 Citrix

 	
 Docker

 	
 Esterel Technologies

 	
 Facebook

 	
 Jane Street

 	
 Kernelyze LLC

 	
 LexiFi

 	
 Microsoft

 	
 OCamlPro

 	
 SimCorp

 For a complete description of this structure, please refer to
https://ocaml.org/consortium/index.html.

 The Caml Consortium is being gradually phased out.
In the future, it should be entirely replaced by the
OCaml Foundation, described next (§8.1.2).

 The OCaml Foundation

 Participant :
	Michel Mauny.

 In June 2018, Michel Mauny created the OCaml Software Foundation (OCSF), a
structure sheltered by the Inria Foundation. The OCSF now has a few patrons.
With the help of Yann Régis-Gianas, it is running the Learn-OCaml project,
which aims at developing the usage of OCaml in higher education. A paper that
presents the project has been accepted for publication at JFLA
2019 [20].
The OCaml Software Foundation and the
Learn-OCaml project have been presented at the 2018 OCaml
workshop.

 The OCaml Software Foundation is expecting more patrons at the
beginning of 2019, and shall organize meetings where donors discuss
and produce suggestions for actions of general interest to be funded.

 Dissemination

 	Dissemination	Promoting Scientific Activities
	Teaching - Supervision - Juries
	Popularization

 Section:
 Dissemination

 Promoting Scientific Activities

 Scientific Events Selection

 Member of the Conference Program Committees

 Xavier Leroy was on the program committee of CADO 2018, the special
session on Compiler, Architecture, Design and Optimization of the 16th
International Conference on High Performance Computing and Simulation.

 Michel Mauny has been a member of the program committee of the International
Symposium on Image, Video and Communications
(ISIVC 2018).

 François Pottier was a member of the program committee of ICFP 2018, the
ACM International Conference on Functional Programming.

 Didier Rémy was a member of the program committee of FLOPS 2018, the
14th International Symposium on Functional and Logic Programming.

 Journal

 Member of the Editorial Boards

 Xavier Leroy is area editor (programming languages) for Journal of the
ACM. He is a member of the editorial board of Journal of Automated
Reasoning.

 Until September 2018, Michel Mauny has been a member of the steering committee
of the OCaml workshop.

 François Pottier is a member of the ICFP steering committee and a member of
the editorial boards of the Journal of Functional Programming and the
Proceedings of the ACM on Programming Languages.

 Didier Rémy is a member of the steering committee of the ML Family workshop.

 Research Administration

 In 2018, Michel Mauny was chairman of the Scientific Committee of the Caml
Consortium. He organized its annual meeting in December 2018.

 Since May 2018, Michel Mauny has been Chief Executive Officer of the Inria
Foundation.

 François Pottier is a member of Inria Paris' Commission de Développement
Technologique and the president of Inria Paris' Comité de Suivi
Doctoral.

 Didier Rémy is Deputy Scientific Director (ADS) in charge of
Algorithmics, Programming, Software and Architecture.

 Didier Rémy is Inria's delegate in the pedagogical board of the
Master Parisien de Recherche en Informatique (MPRI).

 Section:
 Dissemination

 Teaching - Supervision - Juries

 Teaching

 	
 Master (M2):
“Proofs of Programs”,
Jean-Marie Madiot,
18 HETD,
Université Paris Diderot,
France.

 	
 Master (M2):
“Semantics, languages and algorithms for multi-core programming”,
Luc Maranget,
18 HETD,
Université Paris Diderot,
France.

 	
 Master (M2):
“Functional programming and type systems”,
François Pottier,
18 HETD,
Université Paris Diderot,
France.

 	
 Master (M2):
“Functional programming and type systems”,
Didier Rémy,
18 HETD,
Université Paris Diderot,
France.

 	
 Licence (L3):
Jean-Marie Madiot,
“Les principes des langages de programmation”,
40 HETD,
École Polytechnique,
France.

 	
 Master (M1):
Michel Mauny,
“Principles of Programming Languages”,
32 HETD,
ENSTA-ParisTech,
France.

 	
 Open lectures:
Xavier Leroy,
Programmer = démontrer? La correspondance de Curry-Howard aujourd'hui,
16 HETD, Collège de France,
France.

 Supervision

 	
 PhD:
Vitaly Aksenov,
“Synchronization Costs in Parallel Programs and Concurrent Data Structures”,
ITMO University of Saint Petersburg (Russia) and Université Paris Diderot,
September 26, 2018,
advised by Petr Kuznetsov and Anatoly Shalyto
[11].

 	
 PhD:
Pierrick Couderc,
“Vérification des résultats de l'inférence du compilateur OCaml”,
Université Paris-Saclay,
October 23, 2018,
advised by Michel Mauny et Fabrice Le Fessant [34].

 	
 PhD in progress: Albin Coquereau, “Amélioration de performances pour le solveur SMT Alt-Ergo: conception d'outils
d'analyse, optimisations et structures de données efficaces pour OCaml,”
Université Paris-Saclay,
since October 2015,
advised by Michel Mauny, Sylvain Conchon (LRI, Université Paris-Sud) and Fabrice Le Fessant.

 	
 PhD in progress:
Armaël Guéneau,
“Towards Machine-Checked Time Complexity Analyses”,
Université Paris Diderot,
since September 2016,
advised by Arthur Charguéraud and François Pottier.

 	
 PhD in progress:
Glen Mével,
“Towards a system for proving the correctness of
concurrent Multicore OCaml programs”,
Université Paris Diderot,
since November 2018,
advised by Jacques-Henri Jourdan and François Pottier.

 	
 PhD in progress:
Naomi Testard,
“Reasoning about Effect Handlers and Cooperative Concurrency”,
Université Paris Diderot,
since January 2017,
advised by François Pottier.

 	
 PhD in progress:
Thomas Williams,
“Putting Ornaments into practice”,
Université Paris Diderot,
since September 2014,
advised by Didier Rémy.

 Juries

 Xavier Leroy was a member of the jury for the Habilitation defense of
Julien Signoles (Université Paris Sud, July 2018).

 Xavier Leroy chaired the jury for the Ph.D. defense of Mario Pereira
(Université Paris Sud, December 2018).

 François Pottier was a reviewer for Steven Keuchel's PhD thesis
(Ghent University), defended on June 5, 2018.

 François Pottier was a reviewer for Martin Clochard's PhD thesis
(Université Paris-Saclay),
defended on March 30, 2018.

 Section:
 Dissemination

 Popularization

 Articles and contents

 	
 For online publications (Interstices*, Images des Maths, Binaire,
Wikipedia), and more widely blog articles

 Xavier Leroy wrote a short introduction to software sciences in
general and to his lectures at Collège de France. This text was
published by the “Binaire” blog of Le Monde
[30].

 Interventions

 Gergö Barany gave a talk titled “Finding Missed Optimizations in LLVM (and
other compilers)” at the 2018 European LLVM Developers Meeting, explaining
his research on testing the quality of compiler optimizations to
practitioners in compiler development.

 Bibliography

 Major publications by the team in recent years

 	[1]

 	J. Alglave, L. Maranget, M. Tautschnig.
Herding cats: modelling, simulation, testing, and data-mining for weak memory, in: ACM Transactions on Programming Languages and Systems, 2014, vol. 36, no 2, article no 7.
http://dx.doi.org/10.1145/2627752

 	[2]

 	T. Balabonski, F. Pottier, J. Protzenko.
The design and formalization of Mezzo, a permission-based programming language, in: ACM Transactions on Programming Languages and Systems, 2016, vol. 38, no 4, pp. 14:1–14:94.
http://doi.acm.org/10.1145/2837022

 	[3]

 	A. Charguéraud, F. Pottier.
Verifying the Correctness and Amortized Complexity of a Union-Find Implementation in Separation Logic with Time Credits, in: Journal of Automated Reasoning, September 2017. [
DOI : 10.1007/s10817-017-9431-7]
https://hal.inria.fr/hal-01652785

 	[4]

 	K. Chaudhuri, D. Doligez, L. Lamport, S. Merz.
Verifying Safety Properties With the TLA+ Proof System, in: Automated Reasoning, 5th International Joint Conference, IJCAR 2010, Lecture Notes in Computer Science, Springer, 2010, vol. 6173, pp. 142–148.
http://dx.doi.org/10.1007/978-3-642-14203-1_12

 	[5]

 	J. Cretin, D. Rémy.
System F with Coercion Constraints, in: CSL-LICS 2014: Computer Science Logic / Logic In Computer Science, ACM, 2014, article no 34.
http://dx.doi.org/10.1145/2603088.2603128

 	[6]

 	J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie.
A Formally-Verified C Static Analyzer, in: POPL'15: 42nd ACM Symposium on Principles of Programming Languages, ACM Press, January 2015, pp. 247-259.
http://dx.doi.org/10.1145/2676726.2676966

 	[7]

 	D. Le Botlan, D. Rémy.
Recasting MLF, in: Information and Computation, 2009, vol. 207, no 6, pp. 726–785.
http://dx.doi.org/10.1016/j.ic.2008.12.006

 	[8]

 	X. Leroy.
A formally verified compiler back-end, in: Journal of Automated Reasoning, 2009, vol. 43, no 4, pp. 363–446.
http://dx.doi.org/10.1007/s10817-009-9155-4

 	[9]

 	X. Leroy.
Formal verification of a realistic compiler, in: Communications of the ACM, 2009, vol. 52, no 7, pp. 107–115.
http://doi.acm.org/10.1145/1538788.1538814

 	[10]

 	N. Pouillard, F. Pottier.
A unified treatment of syntax with binders, in: Journal of Functional Programming, 2012, vol. 22, no 4–5, pp. 614–704.
http://dx.doi.org/10.1017/S0956796812000251

 Publications of the year

 Doctoral Dissertations and Habilitation Theses

 	[11]

 	V. Aksenov.
Synchronization Costs in Parallel Programs and Concurrent Data Structures, ITMO University ; Paris Diderot University, September 2018.
https://hal.inria.fr/tel-01887505

 Articles in International Peer-Reviewed Journals

 	[12]

 	T. Williams, D. Rémy.
A Principled Approach to Ornamentation in ML, in: Proceedings of the ACM on Programming Languages, January 2018, pp. 1-30. [
DOI : 10.1145/3158109]
https://hal.inria.fr/hal-01666104

 International Conferences with Proceedings

 	[13]

 	U. A. Acar, V. Aksenov, A. Charguéraud, M. Rainey.
Provably and Practically Efficient Granularity Control, in: PPoPP 2019 - Principles and Practice of Parallel Programming, Washington DC, United States, February 2019. [
DOI : 10.1145/3293883.3295725]
https://hal.inria.fr/hal-01973285

 	[14]

 	U. A. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski.
Heartbeat scheduling: provable efficiency for nested parallelism, in: PLDI’18 - 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, Philadelphia, United States, ACM Press, June 2018. [
DOI : 10.1145/3192366.3192391]
https://hal.inria.fr/hal-01937946

 	[15]

 	V. Aksenov, U. A. Acar, A. Charguéraud, M. Rainey.
Poster: Performance challenges in modular parallel programs, in: PPoPP 2018 - 23rd ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, Vienna, Austria, February 2018, vol. 18. [
DOI : 10.1145/3178487.3178516]
https://hal.inria.fr/hal-01887717

 	[16]

 	V. Aksenov, D. Alistarh, P. Kuznetsov.
Brief Announcement: Performance Prediction for Coarse-Grained Locking, in: PODC 2018 - ACM Symposium on Principles of Distributed Computing, Egham, United Kingdom, July 2018. [
DOI : 10.1145/3212734.3212785]
https://hal.inria.fr/hal-01887733

 	[17]

 	V. Aksenov, P. Kuznetsov, A. Shalyto.
On Helping and Stacks, in: The International Conference on Networked Systems, Essaouira, Morocco, May 2018.
https://hal.inria.fr/hal-01888607

 	[18]

 	J. Alglave, L. Maranget, P. McKenney, A. Parri, A. Stern.
Frightening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel, in: ASPLOS2018 - 23rd ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Williamsburg, VA, United States, March 2018. [
DOI : 10.1145/3173162.3177156]
https://hal.inria.fr/hal-01873636

 	[19]

 	G. Barany.
Finding Missed Compiler Optimizations by Differential Testing, in: CC'18 - 27th International Conference on Compiler Construction, Vienna, Austria, February 2018. [
DOI : 10.1145/3178372.3179521]
https://hal.inria.fr/hal-01682683

 	[20]

 	C. Bozman, B. Canou, R. Di Cosmo, P. Couderc, L. Gesbert, G. Henry, F. le Fessant, M. Mauny, C. Morel, L. Peyrot.
Learn-OCaml : un assistant à l'enseignement d'OCaml, in: Journées Francophones des Langages Applicatifs (JFLA), Les Rousses, France, January 2019.
https://hal.inria.fr/hal-01962838

 	[21]

 	A. Guéneau, A. Charguéraud, F. Pottier.
A Fistful of Dollars: Formalizing Asymptotic Complexity Claims via Deductive Program Verification, in: ESOP 2018 - 27th European Symposium on Programming, Thessaloniki, Greece, A. Ahmed (editor), LNCS - Lecture Notes in Computer Science, Springer, April 2018, vol. 10801, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018. [
DOI : 10.1007/978-3-319-89884-1_19]
https://hal.inria.fr/hal-01926485

 	[22]

 	D. Kästner, J. Barrho, U. Wünsche, M. Schlickling, B. Schommer, M. Schmidt, C. Ferdinand, X. Leroy, S. Blazy.
CompCert: Practical Experience on Integrating and Qualifying a Formally Verified Optimizing Compiler, in: ERTS2 2018 - 9th European Congress Embedded Real-Time Software and Systems, Toulouse, France, 3AF, SEE, SIE, January 2018, pp. 1-9.
https://hal.inria.fr/hal-01643290

 	[23]

 	B. Schommer, C. Cullmann, G. Gebhard, X. Leroy, M. Schmidt, S. Wegener.
Embedded Program Annotations for WCET Analysis, in: WCET 2018: 18th International Workshop on Worst-Case Execution Time Analysis, Barcelona, Spain, Dagstuhl Publishing, July 2018, vol. 63. [
DOI : 10.4230/OASIcs.WCET.2018.8]
https://hal.inria.fr/hal-01848686

 National Conferences with Proceedings

 	[24]

 	G. Barany, G. Scherer.
Génération aléatoire de programmes guidée par la vivacité, in: JFLA 2018 - Journées Francophones des Langages Applicatifs, Banyuls-sur-Mer, France, January 2018.
https://hal.inria.fr/hal-01682691

 Conferences without Proceedings

 	[25]

 	G. Barany.
A more precise, more correct stack and register model for CompCert, in: LOLA 2018 - Syntax and Semantics of Low-Level Languages 2018, Oxford, United Kingdom, July 2018.
https://hal.inria.fr/hal-01799629

 Internal Reports

 	[26]

 	X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, J. Vouillon.
The OCaml system release 4.07: Documentation and user's manual, Inria, July 2018, pp. 1-752.
https://hal.inria.fr/hal-00930213

 	[27]

 	X. Leroy.
The CompCert C verified compiler: Documentation and user’s manual: Version 3.4, Inria, September 2018, pp. 1-77.
https://hal.inria.fr/hal-01091802

 	[28]

 	F. Pessaux, D. Doligez.
Compiling Programs and Proofs: FoCaLiZe Internals, Ensta ParisTech, May 2018.
https://hal.archives-ouvertes.fr/hal-01801276

 Other Publications

 	[29]

 	A. Guéneau.
Procrastination: A proof engineering technique, July 2018, Coq Workshop 2018, The Coq Workshop 2018 is a part of FLoC 2018.
https://hal.inria.fr/hal-01962659

 	[30]

 	X. Leroy.
À la recherche du logiciel parfait, November 2018, Post on the "Binaire" popular science blog of Le Monde.
https://hal.inria.fr/hal-01966252

 References in notes

 	[31]

 	C. Bastoul.
Code Generation in the Polyhedral Model Is Easier Than You Think, in: PACT'04: Proceedings of the 13th International Conference on Parallel Architectures and Compilation Techniques, IEEE Computer Society, 2004, pp. 7–16.

 	[32]

 	V. Benzaken, G. Castagna, A. Frisch.
CDuce: an XML-centric general-purpose language, in: Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming, C. Runciman, O. Shivers (editors), ACM, 2003, pp. 51–63.
https://www.lri.fr/~benzaken/papers/icfp03.ps

 	[33]

 	S. Conchon, A. Coquereau, M. Iguernelala, A. Mebsout.
Alt-Ergo 2.2, in: Proceedings of the 16th International Workshop on Satisfiability Modulo Theories, SMT 2018, Oxford, UK, 2018.
https://github.com/OCamlPro/alt-ergo/blob/next/publications/Alt-Ergo-2.2--SMT-Workshop-2018.pdf

 	[34]

 	P. Couderc.
Vérification des résultats de l’inférence de types du langage OCaml, Université Paris-Saclay, 2018.

 	[35]

 	H. Hosoya, B. C. Pierce.
XDuce: A Statically Typed XML Processing Language, in: ACM Transactions on Internet Technology, 2003, vol. 3, no 2, pp. 117–148.
http://doi.acm.org/10.1145/767193.767195

 	[36]

 	L. Lamport.
How to write a 21st century proof, in: Journal of Fixed Point Theory and Applications, 2012, vol. 11, pp. 43–63.
http://dx.doi.org/10.1007/s11784-012-0071-6

 	[37]

 	X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, J. Vouillon.
The Objective Caml system, documentation and user's manual – release 4.07, Inria, July 2018.
http://caml.inria.fr/pub/docs/manual-ocaml-4.07/

 	[38]

 	X. Leroy.
Java bytecode verification: algorithms and formalizations, in: Journal of Automated Reasoning, 2003, vol. 30, no 3–4, pp. 235–269.
http://dx.doi.org/10.1023/A:1025055424017

 	[39]

 	B. C. Pierce.
Types and Programming Languages, MIT Press, 2002.

 	[40]

 	F. Pottier.
Simplifying subtyping constraints: a theory, in: Information and Computation, 2001, vol. 170, no 2, pp. 153–183.
http://gallium.inria.fr/~fpottier/publis/fpottier-ic01.ps.gz

 	[41]

 	F. Pottier, V. Simonet.
Information Flow Inference for ML, in: ACM Transactions on Programming Languages and Systems, January 2003, vol. 25, no 1, pp. 117–158.
http://dx.doi.org/10.1145/596980.596983

 	[42]

 	D. Rémy, J. Vouillon.
Objective ML: A simple object-oriented extension to ML, in: 24th ACM Conference on Principles of Programming Languages, ACM Press, 1997, pp. 40–53.
http://gallium.inria.fr/~remy/ftp/objective-ml!popl97.pdf

 	[43]

 	T. Williams, D. Rémy.
A Principled Approach to Ornamentation in ML, Inria, November 2017, no RR-9117. [
DOI : 10.1145/nnnnnnn.nnnnnnn]
https://hal.inria.fr/hal-01628060

 OEBPS/uid136.html

 Section:
 Partnerships and Cooperations

 International Initiatives

 Informal International Partners

 		
 Princeton University: interactions between
the CompCert verified C compiler and the Verified Software Toolchain
developed at Princeton.

 		
 The University of Cambridge and ARM Ltd, Cambridge and Imperial College London:
formal modeling and testing of weak memory models.

OEBPS/international.html

OEBPS/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/uid131.html

 Section:
 Partnerships and Cooperations

 European Initiatives

 FP7 & H2020 Projects

 Deepsea

 Participants :
	Umut Acar, Vitaly Aksenov, Arthur Charguéraud, Adrien Guatto, Michael Rainey.

 The Deepsea project (2013–2018) is coordinated by Umut Acar and funded by FP7
as an ERC Starting Grant.
Its objective is to develop abstractions, algorithms and languages for
parallelism and dynamic parallelism, with applications to problems on large
data sets.

 ITEA3 Projects

 Assume

 Participants :
	Gergö Barany, Xavier Leroy, Luc Maranget.

 ASSUME (2015–2018) is an ITEA3 project involving France, Germany,
Netherlands, Turkey and Sweden. The French participants are
coordinated by Jean Souyris (Airbus) and include Airbus, Kalray,
Sagem, ENS Paris, and Inria Paris. The goal of the project is to
investigate the usability of multicore and manycore processors for
critical embedded systems. Our involvement in this project focuses on
the formalisation and verification of memory models and of automatic
code generators from reactive languages, as well as on extensions to
the CompCert C compiler.

OEBPS/IMG/iTunesArtwork.png

OEBPS/uid126.html

 Section:
 Partnerships and Cooperations

 National Initiatives

 ANR projects

 Vocal

 Participants :
	Armaël Guéneau, Xavier Leroy, François Pottier.

 The “Vocal” project (2015–2020) aims at developing the first mechanically
verified library of efficient general-purpose data structures and algorithms.
It is funded by Agence Nationale de la Recherche under its “appel à
projets générique 2015”.

 A first release of the library has been published in December 2018.
It contains a small number of verified data structures, including
resizable vectors, hash tables, priority queues, and Union-Find.

 FUI Projects

 Secur-OCaml

 Participants :
	Damien Doligez, Fabrice Le Fessant.

 The “Secur-OCaml” project (2015–2018) has been coordinated by the OCamlPro
company, with a consortium focusing on the use of OCaml in security-critical
contexts, while OCaml is currently mostly used in safety-critical contexts.
Gallium has been involved in this project to integrate security features in
the OCaml language, to build a new independent interpreter for the language,
and to update the recommendations for developers issued by the former LaFoSec
project of ANSSI.
The end-of-project meeting took place in September 2018.

