You do not have JavaScript enabled. Please enable JavaScript to access the full features of the site or access our non-JavaScript page.

Issue 7, 2010

Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA)

Abstract

For the first time we demonstrate a self-sufficient lab-on-a-foil system for the fully automated analysis of nucleic acids which is based on the recently available isothermal recombinase polymerase amplification (RPA). The system consists of a novel, foil-based centrifugal microfluidic cartridge including prestored liquid and dry reagents, and a commercially available centrifugal analyzer for incubation at 37 °C and real-time fluorescence detection. The system was characterized with an assay for the detection of the antibiotic resistance gene mecA of Staphylococcus aureus. The limit of detection was <10 copies and time-to-result was <20 min. Microfluidic unit operations comprise storage and release of liquid reagents, reconstitution of lyophilized reagents, aliquoting the sample into ≤30 independent reaction cavities, and mixing of reagents with the DNA samples. The foil-based cartridge was produced by blow-molding and sealed with a self-adhesive tape. The demonstrated system excels existing PCR based lab-on-a-chip platforms in terms of energy efficiency and time-to-result. Applications are suggested in the field of mobile point-of-care analysis, B-detection, or in combination with continuous monitoring systems.

Graphical abstract: Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA)

Article information

Article type
Paper
Submitted
08 Oct 2009
Accepted
11 Dec 2009
First published
12 Jan 2010

Lab Chip, 2010,10, 887-893

Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA)

S. Lutz, P. Weber, M. Focke, B. Faltin, J. Hoffmann, C. Müller, D. Mark, G. Roth, P. Munday, N. Armes, O. Piepenburg, R. Zengerle and F. von Stetten, Lab Chip, 2010, 10, 887 DOI: 10.1039/B921140C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements