Chronic hypoxia during pregnancy is one of the most common insults to fetal development. We tested the hypothesis that maternal hypoxia induced apoptosis in the hearts of near-term fetal rats. Pregnant rats were divided into two groups, normoxic control and continuous hypoxic exposure (10.5% O2) from day 15 to 21 of gestation. Hearts were isolated from fetal rats of 21-day gestational age. Maternal hypoxia increased hypoxia-inducible factor-1alpha protein in fetal hearts. Chronic hypoxia significantly increased the percentage and size of binucleated myocytes and increased apoptotic cells from 1.4 +/- 0.14% to 2.7 +/- 0.3% in the fetal heart. In addition, the active cleaved form of caspase 3 was significantly increased in the hypoxic heart, which was associated with an increase in caspase 3 activity. There was a significant increase in Fas protein levels in the hypoxic heart. Chronic hypoxia did not change Bax protein levels but significantly decreased Bcl-2 proteins. In addition, chronic hypoxia significantly suppressed expression of heat shock protein 70. However, chronic hypoxia significantly increased expression of the anti-apoptotic protein 14-3-3, among other 14-3-3 isoforms. Chronic hypoxia differentially regulated beta-adrenoreceptor (beta-AR) subtypes with an increase in beta1-AR levels but no changes in beta2-AR. The results demonstrate that maternal hypoxia increases apoptosis in fetal rat heart, which may be mediated by an increase in Fas and a decrease in Bcl-2 proteins. Chronic hypoxia-mediated increase in beta1-AR and decrease in heat shock proteins may also play an important role in apoptosis in the fetal heart.