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1. Introduction

For given A ∈ Zm×n, b ∈ Zm, c ∈ Zn, the primal linear programming problem (abbreviated as the PLPP, for short) is to solve
the following primal linear program:

max cTx
s.t. Ax ≤ b,

and x ≥ on,

where on denotes the all-zeros vector with n components and x is a vector of n variables to be determined. The primal integer
linear programming problem (the PILPP, for short) differs from the PLPP by the requirement that all variablesmust have integer
values. In the primal boolean linear programming problem (the PBLPP, for short), every entry of A, b, c, x is boolean.

For given A ∈ Zm×n, b ∈ Zm, c ∈ Zn, the dual linear programming problem (the DLPP, for short) is to solve the following
program, which is dual to the primal above:

min bTy
s.t. ATy ≥ c,
and y ≥ om.

In the dual integer linear programming problem and the dual boolean linear programming problem (the DILPP and the DBLPP,
for short) we additionally impose the restriction of integrality to variables and the restriction of booleanity to all data and
variables, respectively.
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There are several polynomial-time algorithms for solving the PLPP and the DLPP. We mention Khachiyan’s algorithm [7],
Karmarkar’s algorithm [6], and Nesterov’s algorithm [10,11]. Unfortunately, it is well known that the PBLPP and the DBLPP
are NP-hard problems. Hence, polynomial-time algorithms to solve the PBLPP and the DBLPP are unlikely to exist. Therefore,
it would be interesting to reveal polynomially solvable cases of the PILPP and the DILPP.

Recall that an integer matrix is called totally unimodular if any of its minor is equal to +1 or −1 or 0. It is well known that
all optimal solutions of any primal or dual linear programwith a totally unimodular constraint matrix are integer. Hence, for
any primal linear program and the corresponding primal integer linear programwith a totally unimodular constraintmatrix,
the sets of their optimal solutions coincide. Therefore, any polynomial-time linear optimization algorithm (like algorithms
in [6,7,10,11]) is also an efficient algorithm for the PILPP and the DILPP with totally unimodular constraint matrices.

The next natural step is to consider the bimodular case, i.e. the PILPP and the DILPP having constraint matrices with the
absolute values of all minors in the set {0, 1, 2}. More generally, it would be interesting to investigate the complexity of
the problems with constraint matrices having bounded minors. The maximum absolute value of all minors of an integer
matrix can be interpreted as a proximity measure to the class of totally unimodular matrices. A conjecture arises that for
each fixed natural number c the PILPP and the DILPP can be solved in polynomial time in any class of linear programs with
constraint matrices each minor of which has the absolute value at most c [13]. There are variants of this conjecture, where
the augmentedmatrices

(
cT
A

)
and

(
A b

)
are considered [13].We call any variant of this conjecture the conjecture of bounded

minors.
Unfortunately, not much is known about the complexity of the PILPP and the DILPP for classes of linear programs with

bounded minors. For example, the complexity statuses of the PILPP and the DILPP with bimodular constraint matrices are
still unknown. A step towards a clarification of the complexity in the bimodular case was done in [14]. Namely, it has been
shown that if the rank of a bimodularm×nmatrix A equals n and every n×n sub-matrix of A is not singular, then the PILPP
can be solved in polynomial time. A more general result was obtained in [2]. Namely, the PILPP can be solved in polynomial
time whenever the absolute values of all maximal sub-determinants of constraint matrices lie between 1 and a constant.

The PBLPP was considered in [1]. It has been shown that if A is a boolean matrix with at most two 1s per row, b and c
are boolean vectors, and the absolute values of all minors of

(
cT
A

)
are at most C ′, then the PBLPP can be solved in polynomial

time for any fixed C ′. This result has a graph-theoretical nature, since a linear program for the independent set problem of
finding a maximum subset of pairwise non-adjacent vertices in a given graph G has the transposed incidence matrix IT(G) of
G as the constraint matrix. For this problem, 1s are the only components of the objective function vector and the right-hand
vector.

Despite the fact that advances in the theory of integer linear programming with bounded minors are not substantial,
we believe that at least some variants of the conjecture of bounded minors are true. The aim of this article is to prove
the conjecture for some types of instances. In this paper, we consider boolean linear programming formulations of the
independent set, the vertex and the edge dominating set problems and prove their polynomial-time solvability for classes of
graphs with (augmented) constraint matrices having bounded minors in the absolute value. Namely, we prove that for each
fixed c the independent set problem can be solved in polynomial time in the class {G| all minors of IT(G) augmented with
a row consisting of 1s only are at most c in the absolute value}. Let Av(G) and Ae(G) be the vertex and the edge adjacency
matrices of a graph G, respectively. We also prove that for each fixed c the vertex (edge) dominating set problem can be
solved in polynomial time in the class of graphs {G| all absolute values of minors of Av(G) (Ae(G)) are at most c}.

2. Definitions and notation

A graphH is called a subgraph of a graph G ifH is obtained from G by deletion of vertices and edges assuming that deletion
of a vertex implies deletion of all its incident edges. A graphH is called an induced subgraph of a graph G ifH is obtained from
G by deletion of vertices.

A class of graphs is called hereditary if it is closed under deletion of vertices. It is well known that any hereditary class X
can be defined by a set of its forbidden induced subgraphs Y , i.e. graphs not belonging to X and minimal under deletion of
vertices. We write X = Free(Y). A strongly hereditary graph class is a hereditary class closed under deletion of edges. Any
strongly hereditary class X can be defined by a set of its forbidden subgraphs Y denoted X = Frees(Y).

A graph is bipartite if its vertex set can be partitioned into at most two sets inducing empty graphs. The edge adjacency
graph of another graph is called a line graph.

We use the following notation for matrices:

• Jn — the all-ones square matrix of order n,
• On — the all-zeros square matrix of order n,
• In — the identity matrix of order n,
• jn — the all-ones vector with n components,
• on — the all-zeros vector with n components,
• AT — the matrix transposed to A,
• I(G) — the incidence matrix of a graph G,
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Fig. 1. The graphs A3, B3, Pal3 .

• Av(G) — the vertex adjacency matrix of a graph G,
• Ae(G) — the edge adjacency matrix of a graph G.

We use the following notation associated with graphs:

• Kp,q — the complete bipartite graph with p vertices in the first part and q vertices in the second one,
• K ′

1,p — the graph obtained from the graph K1,p by subdividing each of its edges exactly once,
• Kn — the complete graph with n vertices,
• On — the empty graph with n vertices,
• An — the graph with vertex set {v1, . . . , vn, u1, . . . , un} and edge set {vivj| i ̸= j} ∪ {v1u1, v2u2, . . . , vnun},
• Bn — the graphwith vertex set {v1, . . . , vn, u1, . . . , un} and edge set {vivj| i ̸= j}∪{uiuj| i ̸= j}∪{v1u1, v2u2, . . . , vnun},
• Paln — the graph with vertex set {v1, . . . , v2n+1, u1, . . . , un} and edge set {vivi+1| 1 ≤ i ≤ 2n} ∪ {v2iui| 1 ≤ i ≤ n},
• kG — the disjoint union of k copies of a graph G,
• for a graph G and a subset V ′

⊆ V (G), G[V ′
] denotes the subgraph of G induced by V ′ and G \ V ′ denotes the subgraph

of G obtained by deleting every element of V ′,
• N(x) — the neighborhood of a vertex x, N[x] ≜ N(x) ∪ {x}, where ≜ means the equality by definition.

The graphs A3, B3, Pal3 are depicted in Fig. 1.
By 1, kwe denote the set {1, . . . , k}.

3. Some classical graph problems and their boolean linear programming formulations

An independent set in a graph is a subset of its pairwise non-adjacent vertices. The size of a maximum independent set in
a graph G is called the independence number of G and is denoted by α(G). The independent set problem (briefly, the ISP) is to
determine, for a given graph G and a natural number k, whether α(G) ≥ k or not. It is a classical NP-complete graph problem.

For a given graph Gwith n vertices andm edges, the ISP can be formulated as the following linear program:

max jTnx
s.t. IT(G)x ≤ jm,

and x ∈ {0, 1}n.

Indeed, a variable xv is an indicator that the corresponding vertex v belongs to an optimal solution of the ISP. The inequality
xv + xu ≤ 1 ensures that u and v do not simultaneously belong to any feasible solution of the program, i.e. its every feasible
solution is an independent set.

Let ISP(c) be the set of all graphsG such that the absolute values of all minors of
(

jTn
IT(G)

)
are atmost c . In this paper, wewill

show that for each fixed c the ISP can be solved for graphs in ISP(c) in polynomial time. This result was originally obtained
in [1], but our proof is simpler and shorter.

A vertex dominating set in a graph G is a subset D ⊆ V (G) such that any element of V (G)\D has a neighbor in D. The size of
a minimum vertex dominating set in a graph G is called the vertex domination number of G and is denoted by γ (G). The vertex
dominating set problem (briefly, the VDSP) is to determine, for a given graph G and a natural number k, whether γ (G) ≤ k
or not. The edge dominating set problem (briefly, the EDSP) is defined in a similar way. The VDSP and the EDSP are classical
NP-complete graph problems.

For a given graph G with n vertices and m edges, the VDSP and the EDSP can be formulated as the following linear
programs:

min jTny min jTmy
s.t. (Av(G) + In)y ≥ jn, s.t. (Ae(G) + Im)y ≥ jm,

and y ∈ {0, 1}n and y ∈ {0, 1}m.

To justify this, let us consider the VDSP. A variable yv is an indicator that the corresponding vertex v belongs to an optimal
solution of theVDSP. The inequality xv+

∑
u∈N(v)xu ≥ 1 ensures that the setN[v] contains an element of any feasible solution,

i.e. every feasible solution of the program is a vertex dominating set.
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Fig. 2. The elementary wall of height 5.

Let VDSP(c) and EDSP(c) be the sets of all graphs G such that the absolute values of all minors of Av(G)+ In and Ae(G)+ Im
are at most c , respectively. In this paper, we will show that for each fixed c the VDSP can be solved for graphs in VDSP(c) in
polynomial time. We also show a similar result for the EDSP and EDSP(c).

For each c , the classes ISP(c) and EDSP(c) are strongly hereditary. For each c , the class VDSP(c) is hereditary.

4. The independent set problem

4.1. An inclusion

Lemma 1. For every c ≥ 2, the inclusion ISP(c) ⊆ Frees({Palc}) is true.

Proof. LetM(k, a) be the matrix obtained from
(

jT3k+1
IT(Palk)

)
by changing 1 to a in the entry corresponding to u1 in the first row.

Let us consider the sub-matrixM′ ofM(k, a) induced by the columns corresponding to v1, v2, v3, u1 and the first row and the

rows corresponding to the edges v1v2, v2v3, v2u1. The matrixM′ has the form

⎛⎝a 1 1 1
1 0 1 0
0 1 1 0
0 0 1 1

⎞⎠ assuming that its first column

corresponds to u1, (i + 1)th column corresponds to vi for any 1 ≤ i ≤ 3, the second, third, and fourth rows correspond to
u1v2, v1v2, v2v3, respectively. The following diagram shows a sequence of elementary row and column operations toM′:⎛⎜⎝a 1 1 1

1 0 1 0
0 1 1 0
0 0 1 1

⎞⎟⎠ −→

⎛⎜⎝a 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1

⎞⎟⎠ −→

⎛⎜⎝a 0 0 1
1 0 1 0
0 1 0 0
0 0 1 1

⎞⎟⎠ −→

⎛⎜⎝0 0 −a 1
1 0 1 0
0 1 0 0
0 0 1 1

⎞⎟⎠
−→

⎛⎜⎝0 0 −a 1
1 0 0 0
0 1 0 0
0 0 1 1

⎞⎟⎠ −→

⎛⎜⎝0 0 −a 1 + a
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎠ −→

⎛⎜⎝0 0 0 1 + a
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎠ .

Therefore, elementary operations transform the matrixM(k, a) to the matrix⎛⎜⎜⎝
1 0 0 oT

3k−2
0 1 0 oT

3k−2
0 0 1 oT

3k−2
o3k−2 o3k−2 o3k−2 M(k − 1, a + 1)

⎞⎟⎟⎠ .

Hence, |det(M(k, a))| = |det(M(k− 1, a+ 1))|, i.e. |det(M(k, a))| = |det(M(1, a+ k− 1))|. Clearly, det(M(1, a)) = −1− a.
Hence, |det(M(k, a))| = |a + k|. As M(k, 1) =

(
jT3k+1
IT(Palk)

)
, |det

(
jT3k+1
IT(Palk)

)
| = k + 1.

The matrix
(

jT3k+1
IT(Palk)

)
is the augmented constraint matrix of the ISP for the graph Palk. Hence, ISP(c) does not contain the

graph Palc . Recall that ISP(c) is strongly hereditary. Hence, the inclusion ISP(c) ⊆ Frees({Palc}) holds. ■

4.2. Reed’s theorem

An odd cycle cover in a graph G is a subset X ⊆ V (G) such that G \ X is a bipartite graph.
The elementary wall of height h is a graph consisting of h levels each containing h bricks, where a brick is a cycle of length

6 if the level is not top and bottom, otherwise a brick is a cycle of length 5. The elementary wall of height 5 is depicted in
Fig. 2.

The Escher Wall of height h can be obtained from the elementary wall of height h as follows. Let (v1, . . . , vh+1) and
(u1, . . . , uh+1) be the top and bottom paths of the elementary wall, respectively. We replace every edge (vi, vi+1) with a
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Fig. 3. The Escher Wall of height 4.

path (vi, w
′

i, vi+1) and every edge (ui, ui+1) with a path (ui, w
′′

i , ui+1) for every i. Next, for every i, we add an edge (w′

i, w
′′

h+1−i)
and subdivide it. The Escher Wall of height 4 is shown in Fig. 3.

B. Reed has proved the following result in the paper [12].

Theorem 1. For any k and w, there is a number t(k, w) such that if G is a graph with neither k vertex-disjoint odd cycles nor the
Escher Wall of height w as a subgraph, then G contains an odd cycle cover X with |X | ≤ t(k, w).

4.3. Main result of this section

Theorem 2. For each fixed c, the ISP can be solved for graphs in ISP(c) in polynomial time.

Proof. Let G be an arbitrary graph in ISP(c) and c∗ ≜ ⌈log2(c)⌉ + 1. If G contains c∗ vertex-disjoint odd cycles, then I(G)
contains a sub-matrix with c∗ blocks each having the absolute value of the determinant equal to 2. Hence, it contains aminor
with the absolute value 2c∗ , which is more than c. Therefore, G does not contain c∗ vertex-disjoint odd cycles.

Clearly, the graph Palc is an induced subgraph of the Escher Wall of height c. By Lemma 1 and Theorem 1, G has
an odd cycle cover X of a cardinality at most t(c∗, c). This cover can be found in polynomial time. Clearly, α(G) =

maxX ′⊆X,X ′ is independent(|X ′
| + α(G \ (X ∪

⋃
v∈X ′N(v)))) and for any X ′

⊆ X a graph G \ (X ∪
⋃

v∈X ′N(v)) is bipartite. The
ISP can be solved for bipartite graphs in polynomial time [15]. Hence, for each fixed c , the ISP for graphs in ISP(c) can be
polynomially reduced to the ISP for bipartite graphs. Therefore, for each fixed c , the ISP can be polynomially solved for graphs
in ISP(c). ■

Recall that the result of Theorem 2 was initially obtained by V.E. Alekseev and D.V. Zakharova in the paper [1]. However,
our proof ismuch shorter than those in [1]. The reason for reducing the amount of our proof in comparisonwith theAlekseev–
Zakharova proof is that we use Reed’s theorem and another types of obstructions for graphs in ISP(c). The authors of [1] use
odd cycles and the so-called burs (i.e. cycles with edges sticking out from the cycles) as the obstructions, and they do not
use Reed’s theorem. Theorem 2 certifies that the variant of the conjecture of boundedminors with the extendedmatrix

(
cT
A

)
holds for some instances A, b, c. This gives hope that the conjecture of bounded minors with the extended matrix is really
true.

5. The vertex dominating set problem

5.1. Auxiliary results

Lemma 2. Let c be a natural number and c∗ ≜ ⌈log2(c)⌉ + 1. Then VDSP(c) ⊆ Free({K1,c+2, Ac+2, Bc+1, c∗K1,3, c∗A3}).

Proof. The constraint matrix Av(K1,c+2) + Ic+3 of the VDSP for the graph K1,c+2 is the matrix
(

1 jTc+2
jc+2 Ic+2

)
. Its determinant

is equal to −c − 1, as the matrix can be transformed to the matrix
(

−c − 1 oTc+2
oc+2 Ic+1

)
with elementary row and column

operations. The constraint matrix of the VDSP for the graph c∗K1,3 is the block matrix having c∗ blocks each of which has the
determinant equal to−2. Hence, the determinant of the wholematrix is (−2)c

∗

, whose absolute value is more than c. Hence,
K1,c+2 ̸∈ VDSP(c) and c∗K1,3 ̸∈ VDSP(c). As VDSP(c) is hereditary, the inclusion VDSP(c) ⊆ Free({K1,c+2, c∗K1,3}) holds.

It is not hard to see that the VDSP for the graphs Ac+2 and Bc+1 has the constraint matrices
(
Jc+2 Ic+2
Ic+2 Ic+2

)
and

(
Jc+1 Ic+1
Ic+1 Jc+1

)
,

respectively. The first matrix can be transformed to the matrix
(
Jc+2 − Ic+2 Oc+2

Oc+2 Ic+2

)
with elementary row and column

operations. The matrix Jc+2 − Ic+2 is a circulant matrix, whose determinant is equal to
∏c+1

j=0 p(wj), where p(x) ≜ x + x2 +
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· · · + xc+1 and wj ≜ e2π i· j
c+2 [5]. Clearly, p(w0) = c + 1 and p(x) = x + x2 + · · · + xc+1

=
xc+2

−1
x−1 − 1 for any real number

x ̸= 1. Hence, p(wj) = −1 for any j ∈ 1, c + 1. Therefore, |det(Jc+2 − Ic+2)| = c + 1. Thus, the graphs Ac+2 and c∗A3

do not belong to VDSP(c), i.e. VDSP(c) ⊆ Free({Ac+2, c∗A3}). The sub-matrix of the matrix
(
Jc+1 Ic+1
Ic+1 Jc+1

)
induced by the first

c + 2 rows and the last c + 2 columns is the matrix
(
jc+1 Ic+1
0 jTc+1

)
. The absolute value of its determinant is c + 1. Therefore,

VDSP(c) ⊆ Free({Bc+1}). ■

By R(a, b) we denote the corresponding Ramsey number, i.e. the minimal number n such that any graph with n vertices
contains Ka or Ob as an induced subgraph.

Lemma 3. Let G be an arbitrary graph in VDSP(c) and D be an arbitrary minimal dominating set. Then G[D] is KR(c+1,c+2)-free.

Proof. Assume that G[D] contains a clique with k ≥ R(c + 1, c + 2) vertices. Let vertices v1, . . . , vk form the clique. As D
is a minimal dominating set of G, for every i ∈ 1, k, there is a vertex ui ∈ N(vi) \

⋃k
j=1,j̸=iN(vj). By Ramsey’s theorem, the

induced subgraph G[{u1, . . . , uk}] of G contains Kc+1 or Oc+2 as an induced subgraph. Hence, G contains either Ac+2 or Bc+1
as an induced subgraph. We have a contradiction with the previous lemma. Hence, our initial assumption was false. ■

Lemma 4. Let G be an arbitrary graph in VDSP(c), r be a vertex of G, and Vk(r) be the set of all vertices of G lying at the distance
k from r. There is a function fc(·) : N ∪ {0} −→ N such that for every k the inequality α(G[Vk(r)]) ≤ fc(k) holds.

Proof. By Lemma 2, one can put fc(0) = 1 and fc(1) = c + 1. Let k ≥ 2. Assume that fc(0), fc(1), . . . , fc(k − 1) have
already been defined. Let us define fc(k). Let Sk be a maximum independent set in G[Vk(r)]. Let Dk−1 be a minimum subset of⋃

x∈Sk
N(x) ∩ Vk−1(r) dominating Sk. By Lemma 2, none of the vertices of Dk−1 can be adjacent to c + 2 vertices of Sk. Hence,

|Dk−1| ≥
|Sk|
c+1 , by the pigeonhole principle. As VDSP(c) is hereditary and G ∈ VDSP(c), the induced subgraph G[Dk−1 ∪ Sk]

of G belongs to VDSP(c). By our assumption, G[Dk−1] is Ofc (k−1)+1-free. By Lemma 3, G[Dk−1] is KR(c+1,c+2)-free. Hence, by
Ramsey’s theorem, |Dk−1| ≤ R(R(c + 1, c + 2), fc(k − 1) + 1). Therefore, |Sk| ≤ (c + 1)R(R(c + 1, c + 2), fc(k − 1) + 1). So,
we can put fc(k) = (c + 1)R(R(c + 1, c + 2), fc(k − 1) + 1) + 1. ■

A (K1,3, A3)-packing in a graph G is an arbitrary set {G1,G2, . . . ,Gs} of graphs such that:

1. for every i, a graph Gi is an induced subgraph of G isomorphic to K1,3 or to A3,
2. for any distinct i and j, vertex sets of Gi and Gj do not intersect and there are no two adjacent vertices u ∈ V (Gi) and

v ∈ V (Gj).

A (K1,3, A3)-packing is called optimal if it contains themaximumpossible number of elements. By Lemma 2, any (K1,3, A3)-
packing in a graph in VDSP(c) has at most ⌈log2(c)⌉ elements each isomorphic to K1,3 and at most ⌈log2(c)⌉ elements each
isomorphic to A3. Hence, an optimal (K1,3, A3)-packing in any graph in VDSP(c) can be computed in polynomial time, as it
can be found by enumeration of all subsets of vertices with at most (4 + 6)⌈log2(c)⌉ elements.

Let G be an arbitrary connected graph in VDSP(c) and P ≜ {G1, . . . ,Gs} be its optimal (K1,3, A3)-packing. Let Nd(P) ≜ {x ∈

V (G)| ∃i ∈ 1, s ∃y ∈ V (Gi) such that the distance between x and y is at most d}. LetDG be the set {D∗
| D∗ is a subset of N2(P)

dominating N1(P)}. For any element D∗
∈ DG, we delete every vertex of G dominated by D∗ assuming that any element of D∗

dominates itself. The resultant graph is denoted by G(D∗).

Lemma 5. For any D∗
∈ DG, the graph G(D∗) is {K1,3, A3}-free. If D is a minimum dominating set of G, then γ (G) ≥

γ (G(D ∩ N2(P))) + |D ∩ N2(P)|.

Proof. Clearly, V (G(D∗)) ∩ N1(P) = ∅, by the definition of G(D∗). By this fact and the optimality of P , the graph G(D∗) cannot
contain K1,3 or A3 as an induced subgraph. In other words, G(D∗) is {K1,3, A3}-free.

Let D̃ ≜ D ∩ N2(P) and D′ ≜ D \ D̃. Clearly, D̃ ∈ DG. Let us show that there is a dominating set of G(D̃) having at
most |D′

| elements. This is clear if D′
⊆ V (G(D̃)). Assume that there is a vertex x ∈ D′

\ V (G(D̃)). Notice that x ̸∈ N2(P).
By the construction of G(D̃), there is a vertex y ∈ D̃ such that xy ∈ E(G). Clearly, y ∈ N2(P) \ N1(P). As D is a minimum
dominating set of G, there is a vertex z in N(x) \

⋃
v∈D,v ̸=xN[v]. Hence, z is not dominated by D̃. Therefore, z belongs to G(D̃).

The set N(x) ∩ V (G(D̃)) is a clique. Indeed, if it contains two non-adjacent vertices v and u, then N(y) ∩ {v, u} = ∅ and
x, y, v, u induce K1,3. This is impossible, as P is an optimal (K1,3, A3)-packing. Therefore, (D′

\ {x}) ∪ {z} dominates V (G(D̃)).
Thus, there is a dominating set D′′ of G(D̃) with at most |D′

| elements. The set D̃ ∪ D′′ is a dominating set of G. Moreover,
|D̃ ∪ D′′

| = |D̃| + |D′′
| ≤ |D̃| + |D′

| = |D| = γ (G). As γ (G(D̃)) ≤ |D′′
|, the inequality γ (G) ≥ γ (G(D̃)) + |D̃| holds. ■

5.2. Main result of this section

Theorem 3. For each fixed c, the VDSP for graphs in VDSP(c) can be solved in polynomial time.
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Proof. Let G be a connected graph in VDSP(c). An optimal (K1,3, A3)-packing P in G can be computed in polynomial time.
Let Dopt be a minimum dominating set in the graph G. By Lemmas 3 and 4, there is a function g(·) : N −→ N such
that |Dopt ∩ N2(P)| is at most the value of the function at the point c . Let D∗

G ≜ {D ∈ DG| |D| ≤ g(c)}. Hence, the set
D∗

G can be computed in polynomial time. Let D ∈ D∗

G. The union of D and any minimum dominating set of G(D) is a
dominating set of G. Hence, the inequality γ (G) ≤ |D| + γ (G(D)) is true. By this fact and by the second part of Lemma 5,
γ (G) = minD∈D∗

G
(γ (G(D)) + |D|). AsD∗

G ⊆ DG, by the first part of Lemma 5, the graph G(D) is {K1,3, A3}-free for any D ∈ D∗

G.
The VDSP can be solved in polynomial time for {K1,3, A3}-free graphs [3]. Therefore, for each fixed c , the VDSP for graphs in
VDSP(c) can be solved in polynomial time. ■

Theorem 3 certifies that the conjecture of bounded minors holds for some instances A, b, c. This gives hope that the
conjecture is really true.

6. The edge dominating set problem

6.1. Clique-width of graphs and its importance

Clique-width is an important parameter of graphs. This is explained by the fact that many graph problems can be solved
in polynomial time for any class of graphs of bounded clique-width (see [4] for more information). More precisely, for each
fixed number C , many problems that are NP-complete for the set of all graphs become polynomial-time solvable for any class
of graphs having clique-width at most C . In particular, this category includes the independent set and the vertex dominating
set problems [4].

The class S is the set of all forests having at most three leaves in each connected component. The following result is a
sufficient condition for boundedness of clique-width in strongly hereditary classes. It was proved in [9].

Lemma 6. If X is a strongly hereditary class and S ̸⊆ X , then there is a constant C(X ) such that any graph inX has clique-width
at most C(X ).

Lemma 7. Let c be a natural number and c∗ ≜ ⌈log2(c)⌉ + 1. Then the inclusion EDSP(c) ⊆ Frees({c∗K ′

1,3}) holds.

Proof. The constraint matrix Ae(K ′

1,3) + I6 of the EDSP for the graph K ′

1,3 is the matrix M ≜

⎛⎜⎜⎝
1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎞⎟⎟⎠ up to

permutations of rows and columns. It is not hard to see that det(M) = −2. If a graph G in EDSP(c) contains c∗ vertex-disjoint
copies of K ′

1,3, then the constraint matrix of the problem for G contains a block sub-matrix having c∗ blocks each of which
is M. Hence, the constraint matrix has a sub-matrix, whose determinant is (−2)c

∗

. This is impossible, as 2c∗ > c. Therefore,
EDSP(c) ⊆ Frees({c∗K ′

1,3}). ■

For any c and p, pK ′

1,3 ∈ S and EDSP(c) is strongly hereditary. Hence, by the previous lemmas, clique-width of all graphs
in EDSP(c) is bounded for every c .

6.2. Main result of this section

Theorem 4. For each fixed c, the EDSP can be solved for graphs in EDSP(c) in polynomial time.

Proof. The EDSP can be solved in polynomial time in any class of graphs of bounded clique-width [8]. By this fact and
Lemmas 6–7, for each fixed c , the EDSP can be solved for graphs in EDSP(c) in polynomial time. ■

Theorem 4 certifies that the conjecture of bounded minors holds for some instances A, b, c. This gives hope that the
conjecture is really true.
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