[edit]
Adaptive and non-adaptive minimax rates for weighted Laplacian-Eigenmap based nonparametric regression
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:2800-2808, 2024.
Abstract
We show both adaptive and non-adaptive minimax rates of convergence for a family of weighted Laplacian-Eigenmap based nonparametric regression methods, when the true regression function belongs to a Sobolev space and the sampling density is bounded from above and below. The adaptation methodology is based on extensions of Lepski’s method and is over both the smoothness parameter ($s\in\mathbb{N}_{+}$) and the norm parameter ($M>0$) determining the constraints on the Sobolev space. Our results extend the non-adaptive result in Green et al., (2023), established for a specific normalized graph Laplacian, to a wide class of weighted Laplacian matrices used in practice, including the unnormalized Laplacian and random walk Laplacian.