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Abstract
We address the problem of learning the legitimacy of other agents in a multiagent network when
an unknown subset is comprised of malicious actors. We specifically derive results for the case
of directed graphs and where stochastic side information, or observations of trust, is available.
We refer to this as “learning trust” since agents must identify which neighbors in the network
are reliable, and we derive a learning protocol to achieve this. We also provide analytical results
showing that under this protocol i) agents can learn the legitimacy of all other agents almost surely,
and ii) the opinions of the agents converge in mean to the true legitimacy of all other agents in
the network. Lastly, we provide numerical studies showing that our convergence results hold for
various network topologies and variations in the number of malicious agents.
Keywords: Multiagent systems, adversarial learning, directed graphs, networked systems

1. Introduction
Learning the network topology in multiagent systems, what edges exist and are reliable, is critical
because of the central role it plays in many multiagent collaboration tasks. This includes a wide
range of tasks from estimation, to control, to machine learning, optimization and beyond Rabbat and
Nowak (2004); Olshevsky (2010); Nedić et al. (2018). Many times both the coordination protocols
and achievable performance of the team is dictated by topology Olfati-Saber and Murray (2004);
Xi et al. (2018); Cai and Ishii (2012); Nedić and Olshevsky (2014). Two aspects that can greatly
complicate the learning however, are i) directed graphs, and ii) the presence of untrustworthy data.
Directed graphs are more common in practice due to heterogeneity in sensing and communication
capabilities in multiagent systems, but are often more difficult to analyze due to non-symmetric
information flow. On the other hand, the presence of malicious agents are an important real-world
consideration but lead to untrustworthy data in the system Lamport et al. (2019); Sundaram and
Hadjicostis (2010); Sundaram and Gharesifard (2018); Fischer et al. (1985). Unfortunately, the
compounded impact of both of these challenges is a very complex problem with sparse theory to
date. Our objective in this paper is to develop a learning protocol and its related analysis, where
agents learn the legitimacy of their neighbors in time in the presence of malicious agents over
directed graphs.

The class of problems over directed graphs poses a particular challenge to achieving resilience:
many distributed algorithms on directed graphs require agents to have some information about their
out-neighbors, but due to the asymmetric information flow, they cannot sense or obtain information
directly from these agents. This makes detection of malicious out-neighbors particularly difficult.
For instance, the distributed optimization algorithms presented in Nedić and Olshevsky (2014);
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Tsianos et al. (2012b,a); Makhdoumi and Ozdaglar (2015); Pu et al. (2021) and the distributed con-
sensus algorithms Cai and Ishii (2012); Dominguez-Garcia and Hadjicostis (2012) all require that
the agents know the number of out-neighbors they have. This assumption can break if an agent de-
signs the update rule considering an out-neighbor as legitimate, but that agent is malicious in reality.
Hence, agents need to have some information about the trustworthiness of their out-neighbors. An
interesting concept that has the potential to help this difficult problem is the use of “side informa-
tion” or data in cyberphysical systems Liu et al. (2019); Xiong and Jamieson (2013); Pasqualetti
et al. (2015); Renganathan and Summers (2017); Gil et al. (2017, 2019); Giraldo et al. (2018);
Mallmann-Trenn et al. (2021); Cavorsi et al. (2022). Recent work has shown that by leveraging
physical channels of information in the system, agents can gain stochastic information about the
trustworthiness of the other agents Liu et al. (2019); Giraldo et al. (2018); Xiong and Jamieson
(2013); Gil et al. (2017). We call these “stochastic observations of trust.” It has been shown that
exploiting these observations leads to stronger results in resilience for multiagent systems Yemini
et al. (2022); Gil et al. (2019); Mallmann-Trenn et al. (2021). Unfortunately, however, existing
results do not immediately extend to the case of directed graphs.

In this work, we are interested in learning a trusted graph topology over a directed graph. Us-
ing stochastic information about trustworthy neighbors, agents can decide how they should process
information that they receive from their in-neighbors, and with which out-neighbors they should
share their information. Since agents cannot necessarily observe their out-neighbors, it is natural to
think that they need to get information about their out-neighbors from the other agents. We inves-
tigate what sufficient information agents can share and how they should process this information to
learn the trustworthiness of the other agents in the system in a robust way. This setup is particularly
challenging since there might be malicious agents in the system sharing misinformation during this
learning process. We present a learning protocol to enable each agent to learn the trustworthiness
of all other agents in the system leveraging the opinion of their neighbors. Agents develop opinions
in two ways: For their in-neighbors they can obtain a trust observation, they then use this informa-
tion to form their own opinions. For the other agents, they use the opinions of their in-neighbors
they trust to update their opinions. Under the assumption that the subgraph of legitimate agents is
strongly connected and each malicious agent is observed by at least one legitimate agent, we show
that all legitimate agents can almost surely learn the trustworthiness of all other agents.

Our contributions can be summarized as follows: i) We present a novel learning protocol that
enables the legitimate agents in the system to learn the trustworthiness of the other agents where
the underlying communication network is a directed graph; ii) We prove that using our learning
protocol, legitimate agents can learn the identities of the other agents almost surely; iii) We show
that opinions of the agents converge in mean to the true identity of the agents; iv) We provide
extensive numerical studies to show that the convergence results hold in practice for various network
topologies and the number of malicious agents.
2. Problem Formulation
We consider a distributed multi-agent system where agents need to collaborate in order to achieve
a common task such as solving an optimization problem. We represent the communication graph
among agents with a directed graph G = (V,E) where the set V represents the set of agents
communicating over G with a set E of directed links. Moreover, we let N = |V | be the number of
agents. If there is an edge (i, j) ∈ E, then agent i can send information to j, and we say that j is an
out-neighbor of i and i is an in-neighbor of j. We assume every agent i has a self loop (i, i) ∈ E.
Moreover, for an agent i ∈ V , we define its in-neighborhood N in

i = {j ∈ V | (j, i) ∈ E} and out-

2



LEARNING TRUST OVER DIRECTED GRAPHS

(a) (b) (c)

Figure 1: This schematic shows our problem setup with one malicious agent shown as a red node.
αij and oij are defined in Definitions 1 and 2, respectively. Various stages of learning are depicted:
(a) initial state (b) agents use their direct observations to learn the trustworthiness of other agents
(c) agents indirectly learn the trustworthiness of the entire network by propagating their opinions.

neighborhood N out
i = {j ∈ V | (i, j) ∈ E}. We assume that agents in the system communicate

at every time step t. Moreover, we assume that there might be a set M ⊊ V , called malicious
agents, of non-cooperative agents in the system that are either adversarial or malfunctioning. We
assume that malicious agents can act arbitrarily. We call the set of cooperative agents, that is,
the set of agents outside the set M, legitimate agents denoted by L. We have L ∩ M = ∅ and
L∪M = V . We say that malicious agents are untrustworthy and legitimate agents are trustworthy.
We assume that the set M of malicious agents and the set L of legitimate agents are unknown. We
wish to learn the trustworthiness of agents in the network. We are interested in the problems where
every agent receives a stochastic observation of trust from an agent that sends information during
each communication round. We note that stochastic observations of trust have been developed in
previous works Gil et al. (2017); Yemini et al. (2022) and we use a similar definition here:
Definition 1 (Stochastic Observation of Trust αij) We denote stochastic observations of trust
with αij(t) if agent j sends information to agent i at time t, and we assume that αij(t) ∈ [0, 1].
Here, αij(t) represents the stochastic value of trust of agent j as observed by agent i.

Agents can develop opinions about trustworthiness of their in-neighbors using these stochastic trust
observations over time. However, it is not straightforward how they can develop opinions about their
out-neighbors since they have no direct observations of their trustworthiness. Next, we formalize
the notion of opinion and then we discuss how to construct opinions of agents.

Definition 2 (Opinion of Trust) We denote agent i’s opinion of trust about agent j at time t with
oij(t) ∈ [0, 1]. We say agent i trusts agent j at time t if oij(t) ≥ 1/2 and does not trust agent j
otherwise.

We want to find a learning protocol to enable the legitimate agents to develop accurate opinions
oij(t) about their neighbors in directed graphs, including their out-neighbors. An example case is
shown in Figure 1. Next, we state our assumptions under which we develop our protocol.

Assumption 1 (Connectivity of Network)
1. Sufficiently connected graph: The subgraph GL induced by the legitimate agents is strongly

connected.
2. Observation of malicious agents: For any malicious agent j ∈ M, there exists some legitimate

agent i ∈ L that observes j, i.e., j ∈ N in
i for some i ∈ L.
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Assumption 2 (Trust Observations) Suppose that the following hold:

1. Homogeneity of trust variables: The expectation of the variables αij(t) are constant for
the case of malicious transmissions and legitimate transmissions, respectively, i.e., for some
scalars c, d with c < 0 and d > 0, c = E[αij(t)] − 1/2 for all i ∈ L, j ∈ N in

i ∩ M, and
d = E[αij(t)]− 1/2 for all i ∈ L, j ∈ N in

i ∩ L.
2. Independence of trust observations: The observations αij(t) are independent for all t and all

pairs of agents i and j, with i ∈ L, j ∈ N in
i . Moreover, for any i ∈ L and j ∈ N in

i , the
observation sequence {αij(t)}t∈N is identically distributed.

Note that stochastic observations of trust satisfying Assumption 2.1 were derived in Gil et al. (2017).
Additionally, we make the same Assumptions 1.1, 2.1, and 2.2 as in the work Yemini et al. (2022),
except for the first assumption, where we require the graph to be strongly connected instead of con-
nected since we deal with directed graphs. Assumption 1.2 is new and needed since it is not possible
to learn the legitimacy of an agent if no other agent is observing that agent. This requirement shows
up in the analysis later on. We formalize the problem that we are aiming to solve in this paper as
follows:

Problem 1 Let i ∈ L be a legitimate agent and let q ∈ V be an arbitrary agent in the system.
Assume that stochastic observations of trust are available and Assumption 1 and Assumption 2
hold. We want to find a learning protocol such that for all legitimate agent i ∈ L and for all agents
q ∈ V , oiq(t) converges to 1 if q ∈ L and 0 if q ∈ M almost surely.

3. Learning Protocol
In this section we introduce our learning protocol. Let each agent i store a vector of trust oi(t)
at time t, where oi(t) is an N × 1 column vector. Let oij(t) denote the jth component of oi(t).
The value oij(t) represents agent i’s opinion about the node j where a higher oij(t) indicates that
agent i trusts agent j more. Let βij(t) represent an aggregate trust value for the link (j, i) at time t.
Following Yemini et al. (2022), we define βij(t) as

βij(t) =

t∑
k=0

(αij(k)− 1/2), (1)

for all j ∈ N in
i and we define βii(t) = 1 for all t. Using the aggregate stochastic trust value βij(t),

a legitimate agent i decides on its trusted in-neighbor set at time t by defining N in
i (t) = {j ∈ N in

i |
βij(t) ≥ 0}. In our learning protocol, an agent i shares oi(t) with its out-neighbors. A legitimate
agent i determines its vector of oi(t) after receiving oj(t − 1) from all of its in-neighbors j ∈ N in

i

using the following update rule:

oiq(t) =


1 if q ∈ N in

i and βiq(t) ≥ 0,

0 if q ∈ N in
i and βiq(t) < 0,∑

j∈N in
i (t)

ojq(t−1)

|N in
i (t)| if q /∈ N in

i .

(2)

Every legitimate agent i initializes its opinion vector with vector oi(0) with all ones, meaning that in
the beginning, they trust everyone in the network. However, this choice of initialization is arbitrary
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and as it does not affect our results. A legitimate agent i decides on its trusted out-neighbor set at
time t by defining N out

i (t) = {j ∈ N out
i | oij(t) ≥ 1/2}.

Notice that the trust vector oi(t) is in [0, 1]N by definition. Since oiq(t) ∈ [0, 1] for all legitimate
agents, any malicious agent that sends an opinion outside this range would reveal itself. Therefore,
we assume that malicious agents’ opinions are also in the range [0, 1]. However, we assume that
malicious agents can decide their trust vectors oi(t) arbitrarily within this range. This assumption
captures strong attacks where malicious agents coordinate with each other to choose their opinions
knowing the true trustworthiness of everyone. With our protocol, legitimate agents use only the
stochastic observations of trust αij to determine the legitimacy of their in-neighbors. For the other
nodes, they use the opinions of their trusted in-neighbors to form their opinion.

4. Analysis
Recall that agents either directly observe an agent and develop their opinions using these observa-
tions, or they use the opinions of others to generate an opinion about an agent. In our analysis, we
first show that all legitimate agents learn the trustworthiness of their in-neighbors. Then, we analyze
the propagation of information thereafter. We show that estimated trust values converge in mean and
almost surely to true trust values (1 for legitimate, 0 for malicious agents). Some of the proofs are
provided in our extended technical report due to space limitations Akgün et al. (2022)

4.1. Notation
Let [W ]ij denote entry in row i and column j of matrix W . For some agent j and a set S, define
the indicator function 1{j∈S} as 1 if j ∈ S and 0 otherwise. We also use the same notation for
indicator vectors when the size of the vector is clear from the context. Finally, let the square matrix
W ∈ Rn×n be non-negative, i.e. Wij ≥ 0 for all i, j. Hence, the digraph of W , denoted by
G(W ) = (V (W ), E(W )) is the graph such that V (W ) = {1, . . . , n} and for all i, j ∈ {1, . . . , n},
(i, j) ∈ E(W ) if and only if Wij > 0.

4.2. Learning Trustworthiness
Since agents use their trusted in-neighbors in their updates, we start by showing that agents learn the
trustworthiness of their in-neighbors. This will be useful later to show that the protocol converges
to the desired state. The lemma below follows from (Yemini et al., 2022, Proposition 1).

Lemma 3 There exists a random finite time Tf such that for all t ≥ Tf and for all legitimate agents
i, the trusted in-neighbor set is N in

i (t) = N in
i ∩ L almost surely.

Notice that Lemma 3 shows that every legitimate agent can learn its in-neighbors correctly. Now,
let q ∈ V be a an arbitrary but fixed agent in the network. Our goal is to show that all legitimate
agents learn whether q is legitimate or not. This process requires information to propagate from
agents receiving trust information directly from q to other agents in the network, which motivates
the following definition to use in our analysis:

Definition 4 Let q ∈ V . Define Dq ⊆ L to be the subset of legitimate agents directly observing q,
i.e. Dq ≜ N out

q ∩ L. Define Cq ≜ L\Dq. as the subset of legitimate agents not observing q.

These sets are illustrated in Fig. 2. By Assumption 1, there is at least one legitimate agent
that observes q, so the set Dq of observing agents is non-empty. On the other hand, if Cq is empty,
then all agents are directly observing q. In that case, all legitimate agents will eventually learn the
identity of q by Lemma 3.

5



LEARNING TRUST OVER DIRECTED GRAPHS

(a) Example network (b) q = 2 (c) q = 5

Figure 2: (a) Network with four legitimate (black nodes) and one malicious (red node) agents. (b)
and (c) show the sets Cq and Dq for different q nodes based on the directionality of the graph edges.

Now, we analyze the evolution of oiq(t) by writing the evolution of opinions about agent q in
matrix form. Let uq = |Cq|. Without loss of generality, reorder the indices of agents such that
Cq = {1, 2, . . . , uq}, Dq = {uq + 1, . . . , |L|}, and M = {|L|+ 1, . . . , N}. Hence, we have:

oiq(t) =
∑
j∈Cq

[Wq(t)]ijojq(t− 1) +
∑
j∈Dq

[Wq(t)]ijojq(t− 1) +
∑
j∈M

[Wq(t)]ijojq(t− 1), (3)

where [Wq(t)]ij = 1
|N in

i (t)| if j ∈ N in
i (t) and [Wq(t)]ij = 0 otherwise following from the update

rule (2). Here, Wq(t) is a row-stochastic matrix with size uq × N . Then, we can write Wq(t) =
[WCq(t) WDq(t) WM(t)] where the matrices WCq(t), WDq(t), WM(t) have sizes uq×uq, uq×|Dq|,
and uq × |M| respectively. Let the vectors oCq(t), oDq(t), and oM(t) denote the trust estimates of
agents in Cq and Dq and M. So, we can write (3) in the matrix form as:

oCq(t) =
[
WCq(t) WDq(t) WM(t)

] oCq(t− 1)
oDq(t− 1)
oM(t− 1)

 . (4)

Recall that there exists some random finite time Tf such that all legitimate agents learn their
in-neighbors correctly. Until the system reaches time Tf , malicious agents can affect the learning
dynamics. Nevertheless, we will show that the legitimate agents can recover from that effect after
reaching time Tf . Now, we focus our analysis on the system dynamics after time Tf .

Lemma 5 For t ≥ Tf , the following hold almost surely (i) WM(t) = 0, (ii) WCq(t) = W Cq , (iii)
WDq(t) = WDq , (iv) oDq(t) = 1{q∈L} for some constant matrices W Cq and WDq .

Notice that since Wq(t) is a row-stochastic matrix and that WM(t) is zero, the matrix [W Cq WDq ]
is row stochastic. We now focus on the agents in Cq. For all t ≥ Tf + 1, we can describe the
evolution of oCq(t) as follows:

oCq(t) = W CqoCq(t− 1) +WDqoDq(t− 1) (5)

Now, we define ∆Cq(t) = oCq(t) − 1{q∈L}. Rearranging 5, and using the fact that [W Cq WDq ] is
row-stochastic and oDq(t− 1) = 1{q∈L}, we get:

∆Cq(t) = W Cq∆Cq(t− 1) (6)

6



LEARNING TRUST OVER DIRECTED GRAPHS

Now, we can bound the error norm ∥∆Cq(t)∥ ≤ ∥W t−Tf

Cq ∥∥∆Cq(Tf )∥. Here, ∥∆Cq(Tf )∥ includes
the error introduced by malicious agents before all agents learn their in-neighbors. Since the con-
vergence of the error term ∥∆Cq(t)∥ depends on the convergence of W Cq , we analyze the matrix
W Cq next.

4.3. Convergence of Weakly Chained Substochastic Matrices
Now, we aim to show that W Cq is convergent, i.e. ∥W t

Cq∥ → 0 as t → ∞. In this part, we will
show that W Cq belongs to a family of convergent substochastic matrices called weakly chained
substochastic matrices. To analyze the convergence properties of W Cq , we define the index of
contraction following Azimzadeh (2019)

Definition 6 (Index of contraction) Let the matrix W ∈ Rn×n be substochastic. Define the set
Ĵ(W ) ≜ {1 ≤ i ≤ n :

∑n
j=1Wij < 1}, and let the set K̂i(W ) be the set of all paths1 in the

digraph of W from i to all j ∈ Ĵ(W ). The index of contraction ĉonW associated with matrix W is
defined as:

ĉonW ≜ max

{
0, sup

i ̸∈Ĵ(W )

{
inf

ω∈K̂i(W )
{|ω|}

}}
, (7)

where |ω| denotes the length of the path ω. Also, we follow the conventions that inf ∅ = ∞ and
sup ∅ = −∞.

(Azimzadeh, 2019, Corollary 2.6) shows that a square substochastic matrix W is convergent if and
only if ĉonW is finite. We call a substochastic matrix with finite contraction index weakly chained
substochastic matrix.
Remark 7 Matrix W is a weakly chained substochastic matrix if and only if for all rows i that are
not in the set Ĵ(W ), set K̂i(W ) is non-empty, i.e there is a path i → i1 → · · · → ij in G(W ) such
that row ij sums to less than one. Moreover, a weakly chained substochastic matrix is convergent.
This remark follows directly from the definition of the index of contraction and (Azimzadeh, 2019,
Corollary 2.6). The following sequence of results will show that W Cq is weakly chained substochas-
tic. We will establish that the links E(W Cq) in the digraph of W Cq are the inversion of links in the
original graph. Then, we use assumptions of strong connectivity and existence of a directly observ-
ing agent to conclude that W Cq is weakly chained substochastic.
Lemma 8 Let W Cq ∈ Ruq×uq be defined as before, and let GCq be the subgraph of GL induced by
the set of agents Cq. Then, (i, j) ∈ G(W Cq) if and only if (j, i) ∈ GCq .

Corollary 9 If there is a path v1 → v2 → · · · → vl in GCq , then there is a path vl → vl−1 →
· · · → v1 in G(W Cq).

Theorem 10 For all agents q, given that the set Cq is non-empty, the update matrix W Cq is a weakly
chained substochastic matrix. Moreover, W Cq is convergent.

Proof Let i ∈ Cq. If agent i has a neighbor d ∈ Dq directly observing agent q, row i must sum up
to less than one since agent i receives information from d and d ̸∈ Cq. So, i ∈ Ĵ(W Cq).

1. We use path instead of walk in contrast to Azimzadeh (2019) in our definition, however these definitions are equiva-
lent.
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Assume agent i doesn’t have a directly observing neighbor, i.e. i ̸∈ Ĵ(W Cq). We know that there
exists some agent d ∈ Dq that directly observes agent q by Assumption 1.1 and Assumption 1.2. By
Assumption 1.1, the subgraph induced by legitimate agents are strongly connected, so there exists a
path d = i0 → i1 → i2 → . . . il → i in GL where each arrow denotes a directed edge. l ≥ 1 since
agent i does not have a directly observing neighbor. Now, choose the largest j such that ij ∈ Dq,
and consider the path ij → ij+1 → · · · → il → i. Here, since j is chosen as the largest j s.t.
ij ∈ Dq, we have that ij+1, . . . , il, i ∈ Cq. Moreover, we assumed i ̸∈ Ĵ(W Cq), so j < l since i
does not have a directly observing neighbor.

Now, we know, ij+1 has a neighbor directly observing q, i.e. ij . Therefore, row ij+1 of W Cq
sums to less than 1, meaning that ij+1 ∈ Ĵ(W Cq). From Corollary 9, there exists a path i → il →
il−1 → · · · → ij+2 → ij+1 in the graph G(W Cq). Hence, K̂i(W Cq) is non-empty for i ̸∈ Ĵ(W Cq).
Therefore, W Cq is weakly chained substochastic and convergent by Remark 7.

Corollary 11 For all agents q ∈ V where the set Cq is non-empty, oCq(t) almost surely converges
to 1{q∈L} where 1{q∈L} is a vector with all values equal to 1 if q ∈ L and to 0 if q ∈ M.

Proof Recall that the error is defined as ∆Cq(t) = oCq(t) − 1{q∈L}. By Lemma 3 we know that

there exists a finite time Tf such that for all t ≥ Tf + 1 we have ∥∆Cq(t)∥ ≤ ∥W t−Tf

Cq ∥∥∆Cq(Tf )∥.
Since both oCq(t) and 1{q∈L} are in [0, 1]uq , we have ∥∆Cq(Tf )∥ ≤ √

uq. By Theorem 10, we have

that ∥W t−Tf

Cq ∥ → 0. Therefore, ∥∆Cq(t)∥ → 0 almost surely.

4.4. Main Results
In this part, we present our main results which show that the trust vector of legitimate agents oLq(t)
converges to the true vector 1{q∈L}. Proofs of these results are provided in our extended technical
report Akgün et al. (2022)

Theorem 12 (Convergence to the true trust vector almost surely) For all agents q ∈ V , oLq(t)
converges almost surely to the true trust vector 1{q∈L}, where 1{q∈L} is an |L| × 1 vector with all
of its values equal to 1 if q ∈ L and equal to 0 if q ∈ M.

The proof idea is that oDq(t) converges to the true vector because agents in Dq directly observe q,
and oCq(t) converges to the true value by Corollary 11.

Theorem 13 (Convergence in mean to the true trust vector) For all agents q ∈ V and r ≥ 1,
oLq(t) converges in mean to the true trust vector 1{q∈L}. That is,

lim
t→∞

E[∥oLq(t)− 1{q∈L}∥r] = 0. (8)

Finally, the following corollary shows that following this protocol, every legitimate agent can learn
the trustworthiness of all agents in the network, including their in- and out-neighbors.
Corollary 14 (Learning the Trustworthiness of All Agents) All legitimate agents i ∈ L can
learn the trustworthiness of all agents in the network correctly. That is, there exists a finite time
Tmax such that for all t ≥ Tmax and for all q ∈ V , oiq(t) ≥ 1/2 if q ∈ L and oiq(t) < 1/2 if
q ∈ M almost surely.

5. Numerical Studies

Now, we verify our theoretical results and provide more insight into our protocol with numerical
studies.
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|L| = 20, |M| = 30 |L| = 40, |M| = 60 |L| = 80, |M| = 120

T̂max ĉonmax T̂max ĉonmax T̂max ĉonmax

Cyclic 66 19 109 38 192 78
Erdős–Rényi 49 3 64 3 76 3

Table 1: This table shows T̂max and ĉonmax for 8 different setups. Large ĉonmax usually corre-
sponds to a large T̂max since ĉonmax is an approximation of how long it takes for information to
propagate from observing agents to non-observing agents.

5.1. Experimental Setup
We generate the graph of legitimate agents with cyclic graphs where the contraction index grows
linearly with |L|, and random graphs generated using the Erdős–Rényi model where each edge in
the graph is either included or not with probability 2 log |L|

|L| Erdős et al. (1960). The probability
2 log |L|

|L| is chosen to have a high probability of generating a strongly connected graph Graham and
Pike (2008), and we repeat the process to ensure strong connectivity as in Assumption 1.1. The
Erdős–Rényi graphs we generated are likely to have stronger connectivity and lower contraction
indices compared to cyclic graphs. In this aspect, the cyclic graph represents a difficult case where
trust information propagates slowly. Then, we add malicious agents randomly, and they send send
the exact opposite of the true legitimacy values to their neighbors. This ensures a strong attack.
Following the previous work Yemini et al. (2022), we model the trust observations αij(t) as follows:
At each time step t we sample αij(t) uniformly from the interval [0.35, 0.75] if j ∈ L and from
[0.25, 0.65] if j ∈ M. This way, E[αij(t)] = 0.55 if j is a legitimate agent and E[αij(t)] = 0.45
otherwise. With this setup, Assumption 2 is satisfied.

5.2. Numerical Results

Figure 3: Example graph topologies with |L| = 6, |M| = 9
nodes.

We evaluate the protocol perfor-
mance based on mean squared error
(MSE) of vectors of trust and time
to learn T̂max, defined as the first
time agents classify others correctly
for N consequent steps, which is a
proxy to Tmax as defined in Corol-
lary 14. Here, we present the re-
sults for three different setups with
|L| ∈ {20, 40, 80} and |M| = 1.5 ×
|L|. For each |L|, we test over cyclic
graphs and an Erdős–Rényi graph over legitimate agents which are illustrated in Figure 3. The
results are presented in Figure 4. It can be seen that both MSE and maximum error converge to 0
in all setups. For each setup, we present the maximum contraction index, denoted by ĉonmax and
T̂max in Table 1. We define the maximum contraction index as ĉonmax = maxq∈V ĉonW Cq , where
ĉonW Cq is defined in (7).

Now, we test the effect of malicious agents in the system to the learning protocol. We use the
Erdős–Rényi graph setup as before with 40 legitimate agents. First, we fix the number of malicious
agents to 60 and change the probability of connection between the malicious agents and legitimate
agents. Then, we change the number of malicious agents. The MSE graphs are shown in Fig 5
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(a) |L| = 20, |M| = 30 (b) |L| = 40, |M| = 60 (c) |L| = 80, |M| = 120

Figure 4: Aggregate MSE plots for three cases where |M| = 1.5× |L|. Error converges to zero as
predicted by our theory. Initial disturbance by malicious agents is higher with cyclic graphs since
information propagates more slowly. Convergence time increases as size of graph increases, but
Erdős–Rényi graphs are less sensitive to this change because of their good connectivity.

(a) Varying malicious connectivity (b) Increasing the number of malicious
agents

Figure 5: (a) The effect of connectivity of malicious agents with legitimate agents on MSE. Here,
p denotes the probability that the edge (m, i) is present in the system for i ∈ L and m ∈ M. As
malicious agents are being observed by more agents, disturbance in the initial period decreases.
(b) The effect of increasing the number of malicious agents in the system. Even though increasing
number of malicious agents slows down convergence, the system still converges to the true values
as shown in Theorems 12 and 13.

6. Conclusion
This paper presents a protocol for learning which agents to trust, and the accompanying analysis,
for directed multiagent graphs with stochastic observations of trust. Here, the directed nature of the
graph presents an important challenge where the out-neighbors of a node cannot directly observe
or receive information from it; this leads to a learning dynamic that makes accurate assessment
of malicious agents in the network particularly elusive. The learning protocol developed herein
specifically addresses this challenge of learning trust in directed graphs and constitutes the novelty
of this paper. Since directed graphs often arise in practical multiagent systems due to heterogeneity
in sensing and communication, we believe that the learning protocol and theory presented here can
support many optimization, estimation, and learning tasks for general multiagent systems.
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