Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR

Kaiwen Wang, Nathan Kallus, Wen Sun
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:35864-35907, 2023.

Abstract

In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance $\tau$. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is $\Omega(\sqrt{\tau^{-1}AK})$, where $A$ is the number of actions and $K$ is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of $\Omega(\sqrt{\tau^{-1}SAK})$ (with normalized cumulative rewards), where $S$ is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of $\widetilde O(\sqrt{\tau^{-1}SAK})$ under a continuity assumption and in general attains a near-optimal regret of $\widetilde O(\tau^{-1}\sqrt{SAK})$, which is minimax-optimal for constant $\tau$. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-wang23m, title = {Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with {CV}a{R}}, author = {Wang, Kaiwen and Kallus, Nathan and Sun, Wen}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {35864--35907}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/wang23m/wang23m.pdf}, url = {https://proceedings.mlr.press/v202/wang23m.html}, abstract = {In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance $\tau$. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is $\Omega(\sqrt{\tau^{-1}AK})$, where $A$ is the number of actions and $K$ is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of $\Omega(\sqrt{\tau^{-1}SAK})$ (with normalized cumulative rewards), where $S$ is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of $\widetilde O(\sqrt{\tau^{-1}SAK})$ under a continuity assumption and in general attains a near-optimal regret of $\widetilde O(\tau^{-1}\sqrt{SAK})$, which is minimax-optimal for constant $\tau$. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.} }
Endnote
%0 Conference Paper %T Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR %A Kaiwen Wang %A Nathan Kallus %A Wen Sun %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-wang23m %I PMLR %P 35864--35907 %U https://proceedings.mlr.press/v202/wang23m.html %V 202 %X In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance $\tau$. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is $\Omega(\sqrt{\tau^{-1}AK})$, where $A$ is the number of actions and $K$ is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of $\Omega(\sqrt{\tau^{-1}SAK})$ (with normalized cumulative rewards), where $S$ is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of $\widetilde O(\sqrt{\tau^{-1}SAK})$ under a continuity assumption and in general attains a near-optimal regret of $\widetilde O(\tau^{-1}\sqrt{SAK})$, which is minimax-optimal for constant $\tau$. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.
APA
Wang, K., Kallus, N. & Sun, W.. (2023). Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:35864-35907 Available from https://proceedings.mlr.press/v202/wang23m.html.

Related Material