Real-time safe control of neural network dynamic models with sound approximation

Hanjiang Hu, Jianglin Lan, Changliu Liu
Proceedings of the 6th Annual Learning for Dynamics & Control Conference, PMLR 242:92-103, 2024.

Abstract

Safe control of neural network dynamic models (NNDMs) is important to robotics and many applications. However, it remains challenging to compute an optimal safe control in real time for NNDM. To enable real-time computation, we propose to use a sound approximation of the NNDM in the control synthesis. In particular, we propose Bernstein over-approximated neural dynamics (BOND) based on the Bernstein polynomial over-approximation (BPO) of ReLU activation functions in NNDM. To mitigate the errors introduced by the approximation and to ensure persistent feasibility of the safe control problems, we synthesize a worst-case safety index using the most unsafe approximated state within the BPO relaxation of NNDM offline. For the online real-time optimization, we formulate the first-order Taylor approximation of the nonlinear worst-case safety constraint as an additional linear layer of NNDM with the l2 bounded bias term for the higher-order remainder. Comprehensive experiments with different neural dynamics and safety constraints show that with safety guaranteed, our NNDMs with sound approximation are 10-100 times faster than the safe control baseline that uses mixed integer programming (MIP), validating the effectiveness of the worst-case safety index and scalability of the proposed BOND in real-time large-scale settings.

Cite this Paper


BibTeX
@InProceedings{pmlr-v242-hu24a, title = {Real-time safe control of neural network dynamic models with sound approximation}, author = {Hu, Hanjiang and Lan, Jianglin and Liu, Changliu}, booktitle = {Proceedings of the 6th Annual Learning for Dynamics & Control Conference}, pages = {92--103}, year = {2024}, editor = {Abate, Alessandro and Cannon, Mark and Margellos, Kostas and Papachristodoulou, Antonis}, volume = {242}, series = {Proceedings of Machine Learning Research}, month = {15--17 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v242/hu24a/hu24a.pdf}, url = {https://proceedings.mlr.press/v242/hu24a.html}, abstract = {Safe control of neural network dynamic models (NNDMs) is important to robotics and many applications. However, it remains challenging to compute an optimal safe control in real time for NNDM. To enable real-time computation, we propose to use a sound approximation of the NNDM in the control synthesis. In particular, we propose Bernstein over-approximated neural dynamics (BOND) based on the Bernstein polynomial over-approximation (BPO) of ReLU activation functions in NNDM. To mitigate the errors introduced by the approximation and to ensure persistent feasibility of the safe control problems, we synthesize a worst-case safety index using the most unsafe approximated state within the BPO relaxation of NNDM offline. For the online real-time optimization, we formulate the first-order Taylor approximation of the nonlinear worst-case safety constraint as an additional linear layer of NNDM with the l2 bounded bias term for the higher-order remainder. Comprehensive experiments with different neural dynamics and safety constraints show that with safety guaranteed, our NNDMs with sound approximation are 10-100 times faster than the safe control baseline that uses mixed integer programming (MIP), validating the effectiveness of the worst-case safety index and scalability of the proposed BOND in real-time large-scale settings.} }
Endnote
%0 Conference Paper %T Real-time safe control of neural network dynamic models with sound approximation %A Hanjiang Hu %A Jianglin Lan %A Changliu Liu %B Proceedings of the 6th Annual Learning for Dynamics & Control Conference %C Proceedings of Machine Learning Research %D 2024 %E Alessandro Abate %E Mark Cannon %E Kostas Margellos %E Antonis Papachristodoulou %F pmlr-v242-hu24a %I PMLR %P 92--103 %U https://proceedings.mlr.press/v242/hu24a.html %V 242 %X Safe control of neural network dynamic models (NNDMs) is important to robotics and many applications. However, it remains challenging to compute an optimal safe control in real time for NNDM. To enable real-time computation, we propose to use a sound approximation of the NNDM in the control synthesis. In particular, we propose Bernstein over-approximated neural dynamics (BOND) based on the Bernstein polynomial over-approximation (BPO) of ReLU activation functions in NNDM. To mitigate the errors introduced by the approximation and to ensure persistent feasibility of the safe control problems, we synthesize a worst-case safety index using the most unsafe approximated state within the BPO relaxation of NNDM offline. For the online real-time optimization, we formulate the first-order Taylor approximation of the nonlinear worst-case safety constraint as an additional linear layer of NNDM with the l2 bounded bias term for the higher-order remainder. Comprehensive experiments with different neural dynamics and safety constraints show that with safety guaranteed, our NNDMs with sound approximation are 10-100 times faster than the safe control baseline that uses mixed integer programming (MIP), validating the effectiveness of the worst-case safety index and scalability of the proposed BOND in real-time large-scale settings.
APA
Hu, H., Lan, J. & Liu, C.. (2024). Real-time safe control of neural network dynamic models with sound approximation. Proceedings of the 6th Annual Learning for Dynamics & Control Conference, in Proceedings of Machine Learning Research 242:92-103 Available from https://proceedings.mlr.press/v242/hu24a.html.

Related Material