Implicit Bias of Linear Equivariant Networks

Hannah Lawrence, Kristian Georgiev, Andrew Dienes, Bobak T. Kiani
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:12096-12125, 2022.

Abstract

Group equivariant convolutional neural networks (G-CNNs) are generalizations of convolutional neural networks (CNNs) which excel in a wide range of technical applications by explicitly encoding symmetries, such as rotations and permutations, in their architectures. Although the success of G-CNNs is driven by their explicit symmetry bias, a recent line of work has proposed that the implicit bias of training algorithms on particular architectures is key to understanding generalization for overparameterized neural nets. In this context, we show that L-layer full-width linear G-CNNs trained via gradient descent for binary classification converge to solutions with low-rank Fourier matrix coefficients, regularized by the 2/L-Schatten matrix norm. Our work strictly generalizes previous analysis on the implicit bias of linear CNNs to linear G-CNNs over all finite groups, including the challenging setting of non-commutative groups (such as permutations), as well as band-limited G-CNNs over infinite groups. We validate our theorems via experiments on a variety of groups, and empirically explore more realistic nonlinear networks, which locally capture similar regularization patterns. Finally, we provide intuitive interpretations of our Fourier space implicit regularization results in real space via uncertainty principles.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-lawrence22a, title = {Implicit Bias of Linear Equivariant Networks}, author = {Lawrence, Hannah and Georgiev, Kristian and Dienes, Andrew and Kiani, Bobak T.}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {12096--12125}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/lawrence22a/lawrence22a.pdf}, url = {https://proceedings.mlr.press/v162/lawrence22a.html}, abstract = {Group equivariant convolutional neural networks (G-CNNs) are generalizations of convolutional neural networks (CNNs) which excel in a wide range of technical applications by explicitly encoding symmetries, such as rotations and permutations, in their architectures. Although the success of G-CNNs is driven by their explicit symmetry bias, a recent line of work has proposed that the implicit bias of training algorithms on particular architectures is key to understanding generalization for overparameterized neural nets. In this context, we show that L-layer full-width linear G-CNNs trained via gradient descent for binary classification converge to solutions with low-rank Fourier matrix coefficients, regularized by the 2/L-Schatten matrix norm. Our work strictly generalizes previous analysis on the implicit bias of linear CNNs to linear G-CNNs over all finite groups, including the challenging setting of non-commutative groups (such as permutations), as well as band-limited G-CNNs over infinite groups. We validate our theorems via experiments on a variety of groups, and empirically explore more realistic nonlinear networks, which locally capture similar regularization patterns. Finally, we provide intuitive interpretations of our Fourier space implicit regularization results in real space via uncertainty principles.} }
Endnote
%0 Conference Paper %T Implicit Bias of Linear Equivariant Networks %A Hannah Lawrence %A Kristian Georgiev %A Andrew Dienes %A Bobak T. Kiani %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-lawrence22a %I PMLR %P 12096--12125 %U https://proceedings.mlr.press/v162/lawrence22a.html %V 162 %X Group equivariant convolutional neural networks (G-CNNs) are generalizations of convolutional neural networks (CNNs) which excel in a wide range of technical applications by explicitly encoding symmetries, such as rotations and permutations, in their architectures. Although the success of G-CNNs is driven by their explicit symmetry bias, a recent line of work has proposed that the implicit bias of training algorithms on particular architectures is key to understanding generalization for overparameterized neural nets. In this context, we show that L-layer full-width linear G-CNNs trained via gradient descent for binary classification converge to solutions with low-rank Fourier matrix coefficients, regularized by the 2/L-Schatten matrix norm. Our work strictly generalizes previous analysis on the implicit bias of linear CNNs to linear G-CNNs over all finite groups, including the challenging setting of non-commutative groups (such as permutations), as well as band-limited G-CNNs over infinite groups. We validate our theorems via experiments on a variety of groups, and empirically explore more realistic nonlinear networks, which locally capture similar regularization patterns. Finally, we provide intuitive interpretations of our Fourier space implicit regularization results in real space via uncertainty principles.
APA
Lawrence, H., Georgiev, K., Dienes, A. & Kiani, B.T.. (2022). Implicit Bias of Linear Equivariant Networks. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:12096-12125 Available from https://proceedings.mlr.press/v162/lawrence22a.html.

Related Material